These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
241 related articles for article (PubMed ID: 34813804)
1. Unveiling the dipole synergic effect of biogenic and anthropogenic emissions on ozone concentrations. Gao Y; Yan F; Ma M; Ding A; Liao H; Wang S; Wang X; Zhao B; Cai W; Su H; Yao X; Gao H Sci Total Environ; 2022 Apr; 818():151722. PubMed ID: 34813804 [TBL] [Abstract][Full Text] [Related]
2. Contributions of local emissions and regional background to summertime ozone in central China. Su F; Xu Q; Yin S; Wang K; Liu G; Wang P; Kang M; Zhang R; Ying Q J Environ Manage; 2023 Jul; 338():117778. PubMed ID: 37019021 [TBL] [Abstract][Full Text] [Related]
3. Characterizing the distinct modulation of future emissions on summer ozone concentrations between urban and rural areas over China. Zeng X; Gao Y; Wang Y; Ma M; Zhang J; Sheng L Sci Total Environ; 2022 May; 820():153324. PubMed ID: 35074361 [TBL] [Abstract][Full Text] [Related]
4. Modeling an air pollution episode in northwestern United States: identifying the effect of nitrogen oxide and volatile organic compound emission changes on air pollutants formation using direct sensitivity analysis. Tsimpidi AP; Trail M; Hu Y; Nenes A; Russell AG J Air Waste Manag Assoc; 2012 Oct; 62(10):1150-65. PubMed ID: 23155861 [TBL] [Abstract][Full Text] [Related]
5. Strong ozone production at a rural site in theNorth China Plain: Mixed effects of urban plumesand biogenic emissions. Zong R; Yang X; Wen L; Xu C; Zhu Y; Chen T; Yao L; Wang L; Zhang J; Yang L; Wang X; Shao M; Zhu T; Xue L; Wang W J Environ Sci (China); 2018 Sep; 71():261-270. PubMed ID: 30195684 [TBL] [Abstract][Full Text] [Related]
6. A comprehensive study on ozone pollution in a megacity in North China Plain during summertime: Observations, source attributions and ozone sensitivity. Sun J; Shen Z; Wang R; Li G; Zhang Y; Zhang B; He K; Tang Z; Xu H; Qu L; Sai Hang Ho S; Liu S; Cao J Environ Int; 2021 Jan; 146():106279. PubMed ID: 33276317 [TBL] [Abstract][Full Text] [Related]
7. Characteristics and sources of volatile organic compounds during high ozone episodes: A case study at a site in the eastern Guanzhong Plain, China. Hui L; Ma T; Gao Z; Gao J; Wang Z; Xue L; Liu H; Liu J Chemosphere; 2021 Feb; 265():129072. PubMed ID: 33302209 [TBL] [Abstract][Full Text] [Related]
8. The impact of anthropogenic and biogenic emissions on surface ozone concentrations in Istanbul. Im U; Poupkou A; Incecik S; Markakis K; Kindap T; Unal A; Melas D; Yenigun O; Topcu S; Odman MT; Tayanc M; Guler M Sci Total Environ; 2011 Mar; 409(7):1255-65. PubMed ID: 21257192 [TBL] [Abstract][Full Text] [Related]
9. Ozone response modeling to NOx and VOC emissions: Examining machine learning models. Kuo CP; Fu JS Environ Int; 2023 Jun; 176():107969. PubMed ID: 37201398 [TBL] [Abstract][Full Text] [Related]
10. Assessment of regional air quality resulting from emission control in the Pearl River Delta region, southern China. Wang N; Lyu XP; Deng XJ; Guo H; Deng T; Li Y; Yin CQ; Li F; Wang SQ Sci Total Environ; 2016 Dec; 573():1554-1565. PubMed ID: 27642074 [TBL] [Abstract][Full Text] [Related]
11. [Response of PM Shang YJ; Mao YH; Liao H; Hu JL; Zou ZY Huan Jing Ke Xue; 2023 Aug; 44(8):4250-4261. PubMed ID: 37694620 [TBL] [Abstract][Full Text] [Related]
12. Effects of Anthropogenic and Biogenic Volatile Organic Compounds on Los Angeles Air Quality. Gu S; Guenther A; Faiola C Environ Sci Technol; 2021 Sep; 55(18):12191-12201. PubMed ID: 34495669 [TBL] [Abstract][Full Text] [Related]
13. Biogenic emissions of isoprenoids and NO in China and comparison to anthropogenic emissions. Tie X; Li G; Ying Z; Guenther A; Madronich S Sci Total Environ; 2006 Dec; 371(1-3):238-51. PubMed ID: 17027064 [TBL] [Abstract][Full Text] [Related]
14. Long-term trend in surface ozone in Houston-Galveston-Brazoria: Sectoral contributions based on changes in volatile organic compounds. Soleimanian E; Wang Y; Estes M Environ Pollut; 2022 Sep; 308():119647. PubMed ID: 35718047 [TBL] [Abstract][Full Text] [Related]
15. Temperature-Dependent Evaporative Anthropogenic VOC Emissions Significantly Exacerbate Regional Ozone Pollution. Wu W; Fu TM; Arnold SR; Spracklen DV; Zhang A; Tao W; Wang X; Hou Y; Mo J; Chen J; Li Y; Feng X; Lin H; Huang Z; Zheng J; Shen H; Zhu L; Wang C; Ye J; Yang X Environ Sci Technol; 2024 Mar; 58(12):5430-5441. PubMed ID: 38471097 [TBL] [Abstract][Full Text] [Related]
16. Ozone control strategies for local formation- and regional transport-dominant scenarios in a manufacturing city in southern China. Mao J; Yan F; Zheng L; You Y; Wang W; Jia S; Liao W; Wang X; Chen W Sci Total Environ; 2022 Mar; 813():151883. PubMed ID: 34826481 [TBL] [Abstract][Full Text] [Related]
17. Evaluation of a highly condensed SAPRC chemical mechanism and two emission inventories for ozone source apportionment and emission control strategy assessments in China. Kang M; Hu J; Zhang H; Ying Q Sci Total Environ; 2022 Mar; 813():151922. PubMed ID: 34826486 [TBL] [Abstract][Full Text] [Related]
18. Response surface modeling-based source contribution analysis and VOC emission control policy assessment in a typical ozone-polluted urban Shunde, China. You Z; Zhu Y; Jang C; Wang S; Gao J; Lin CJ; Li M; Zhu Z; Wei H; Yang W J Environ Sci (China); 2017 Jan; 51():294-304. PubMed ID: 28115141 [TBL] [Abstract][Full Text] [Related]
19. Long-term trend of O Gao W; Tie X; Xu J; Huang R; Mao X; Zhou G; Chang L Sci Total Environ; 2017 Dec; 603-604():425-433. PubMed ID: 28636977 [TBL] [Abstract][Full Text] [Related]
20. Worsening ozone air pollution with reduced NO Zhao M; Zhang Y; Pei C; Chen T; Mu J; Liu Y; Wang Y; Wang W; Xue L J Environ Manage; 2022 Dec; 324():116327. PubMed ID: 36183531 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]