BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 34813808)

  • 21. Supply of proton enhances CO electrosynthesis for acetate and volatile fatty acid productions.
    Song YE; Kim C; Li S; Baek J; Seol E; Park C; Na JG; Lee J; Oh YK; Kim JR
    Bioresour Technol; 2021 Jan; 320(Pt A):124245. PubMed ID: 33126131
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Acetate production and electron utilization facilitated by sulfate-reducing bacteria in a microbial electrosynthesis system.
    Xiang Y; Liu G; Zhang R; Lu Y; Luo H
    Bioresour Technol; 2017 Oct; 241():821-829. PubMed ID: 28628986
    [TBL] [Abstract][Full Text] [Related]  

  • 23. ZnMo-MOF as anti-CO hydrogen electrocatalyst enhance microbial electrosynthesis for CO/CO
    Chen Y; Chen Y; Dai DZ; Li XL; Song T; Xie J
    Chemosphere; 2024 Jun; 358():142157. PubMed ID: 38679181
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Performance of different Sporomusa species for the microbial electrosynthesis of acetate from carbon dioxide.
    Aryal N; Tremblay PL; Lizak DM; Zhang T
    Bioresour Technol; 2017 Jun; 233():184-190. PubMed ID: 28279911
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enhanced bio-production from CO
    Izadi P; Fontmorin JM; Lim SS; Head IM; Yu EH
    Faraday Discuss; 2021 Jul; 230(0):344-359. PubMed ID: 34259692
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Solid-waste-recycled CuO/C
    Liu J; Lin J; Yi K; Liu F; Gao F; Wang M; Huang F
    Nanoscale; 2024 Mar; 16(13):6488-6494. PubMed ID: 38477326
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Increasing methane content in biogas and simultaneous value added product recovery using microbial electrosynthesis.
    Das S; Chatterjee P; Ghangrekar MM
    Water Sci Technol; 2018 Mar; 77(5-6):1293-1302. PubMed ID: 29528317
    [TBL] [Abstract][Full Text] [Related]  

  • 28. 0D carbon dots intercalated Z-scheme CuO/g-C
    Wu X; Zhao Q; Zhang J; Li S; Liu H; Liu K; Li Y; Kong D; Sun H; Wu M
    J Colloid Interface Sci; 2023 Mar; 634():972-982. PubMed ID: 36571859
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Direct utilization of industrial carbon dioxide with low impurities for acetate production via microbial electrosynthesis.
    Roy M; Yadav R; Chiranjeevi P; Patil SA
    Bioresour Technol; 2021 Jan; 320(Pt A):124289. PubMed ID: 33129088
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Copper ferrite supported reduced graphene oxide as cathode materials to enhance microbial electrosynthesis of volatile fatty acids from CO
    Thatikayala D; Min B
    Sci Total Environ; 2021 May; 768():144477. PubMed ID: 33736314
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Progress and perspectives on microbial electrosynthesis for valorisation of CO
    Thulluru LP; Ghangrekar MM; Chowdhury S
    J Environ Manage; 2023 Apr; 332():117323. PubMed ID: 36716542
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Carbon dioxide reduction to high-value chemicals in microbial electrosynthesis system: Biological conversion and regulation strategies.
    Chen G; Wang R; Sun M; Chen J; Iyobosa E; Zhao J
    Chemosphere; 2023 Dec; 344():140251. PubMed ID: 37769909
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bioelectrochemical conversion of CO
    Bajracharya S; Vanbroekhoven K; Buisman CJN; Strik DPBTB; Pant D
    Faraday Discuss; 2017 Sep; 202():433-449. PubMed ID: 28657636
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enhanced microbial electrosynthesis by using defined co-cultures.
    Deutzmann JS; Spormann AM
    ISME J; 2017 Mar; 11(3):704-714. PubMed ID: 27801903
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An enriched electroactive homoacetogenic biocathode for the microbial electrosynthesis of acetate through carbon dioxide reduction.
    Mohanakrishna G; Seelam JS; Vanbroekhoven K; Pant D
    Faraday Discuss; 2015; 183():445-62. PubMed ID: 26399888
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fluidized granular activated carbon electrode for efficient microbial electrosynthesis of acetate from carbon dioxide.
    Dong Z; Wang H; Tian S; Yang Y; Yuan H; Huang Q; Song TS; Xie J
    Bioresour Technol; 2018 Dec; 269():203-209. PubMed ID: 30173066
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Catalytic Cooperation between a Copper Oxide Electrocatalyst and a Microbial Community for Microbial Electrosynthesis.
    Chatzipanagiotou KR; Soekhoe V; Jourdin L; Buisman CJN; Bitter JH; Strik DPBTB
    Chempluschem; 2021 May; 86(5):763-777. PubMed ID: 33973736
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bringing High-Rate, CO2-Based Microbial Electrosynthesis Closer to Practical Implementation through Improved Electrode Design and Operating Conditions.
    Jourdin L; Freguia S; Flexer V; Keller J
    Environ Sci Technol; 2016 Feb; 50(4):1982-9. PubMed ID: 26810392
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A slurry electrode integrated with membrane electrolysis for high-performance acetate production in microbial electrosynthesis.
    Jiang Y; Liang Q; Chu N; Hao W; Zhang L; Zhan G; Li D; Zeng RJ
    Sci Total Environ; 2020 Nov; 741():140198. PubMed ID: 32574921
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Extracellular Electrons Powered Microbial CO
    Zou L; Zhu F; Chang FX; Yong YC
    Adv Biochem Eng Biotechnol; 2022; 180():243-271. PubMed ID: 35091811
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.