These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 34814124)

  • 21. Unidirectional Fast Growth and Forced Jumping of Stretched Droplets on Nanostructured Microporous Surfaces.
    Aili A; Li H; Alhosani MH; Zhang T
    ACS Appl Mater Interfaces; 2016 Aug; 8(33):21776-86. PubMed ID: 27486890
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evaporation kinetics of sessile water droplets on micropillared superhydrophobic surfaces.
    Xu W; Leeladhar R; Kang YT; Choi CH
    Langmuir; 2013 May; 29(20):6032-41. PubMed ID: 23656600
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Impact Dynamics of Non-Newtonian Droplets on Superhydrophobic Surfaces.
    Biroun MH; Haworth L; Abdolnezhad H; Khosravi A; Agrawal P; McHale G; Torun H; Semprebon C; Jabbari M; Fu YQ
    Langmuir; 2023 Apr; 39(16):5793-5802. PubMed ID: 37041655
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Directional Movement of Droplets in Grooves: Suspended or Immersed?
    Xu W; Lan Z; Peng B; Wen R; Chen Y; Ma X
    Sci Rep; 2016 Jan; 6():18836. PubMed ID: 26743167
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bouncing Dynamics of Impact Droplets on the Biomimetic Plane and Convex Superhydrophobic Surfaces with Dual-Level and Three-Level Structures.
    Lian Z; Xu J; Ren W; Wang Z; Yu H
    Nanomaterials (Basel); 2019 Oct; 9(11):. PubMed ID: 31731520
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Induced detachment of coalescing droplets on superhydrophobic surfaces.
    Farhangi MM; Graham PJ; Choudhury NR; Dolatabadi A
    Langmuir; 2012 Jan; 28(2):1290-303. PubMed ID: 22171956
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Directional Transportation of Impacting Droplets on Wettability-Controlled Surfaces.
    Chu F; Luo J; Hao C; Zhang J; Wu X; Wen D
    Langmuir; 2020 Jun; 36(21):5855-5862. PubMed ID: 32390439
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Successive Rebounds of Impinging Water Droplets on Superhydrophobic Surfaces.
    Wang Y; Zhao Y; Sun L; Mehrizi AA; Lin S; Guo J; Chen L
    Langmuir; 2022 Mar; 38(12):3860-3867. PubMed ID: 35293214
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Robust Superhydrophobic Conical Pillars from Syringe Needle Shape to Straight Conical Pillar Shape for Droplet Pancake Bouncing.
    Song J; Huang L; Zhao C; Wu S; Liu H; Lu Y; Deng X; Carmalt CJ; Parkin IP; Sun Y
    ACS Appl Mater Interfaces; 2019 Dec; 11(48):45345-45353. PubMed ID: 31651139
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Coalescence, Spreading, and Rebound of Two Water Droplets with Different Temperatures on a Superhydrophobic Surface.
    Xu H; Chang C; Yi N; Tao P; Song C; Wu J; Deng T; Shang W
    ACS Omega; 2019 Oct; 4(18):17615-17622. PubMed ID: 31681868
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Role of water vapor desublimation in the adhesion of an iced droplet to a superhydrophobic surface.
    Boinovich L; Emelyanenko AM
    Langmuir; 2014 Oct; 30(42):12596-601. PubMed ID: 25286023
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Directional Sliding Behavior of a Water Droplet on a Wedge-Shape Patterned Functional Surface.
    Liu M; Yao Y; Li J; Peng Z; Chen S
    J Phys Chem B; 2020 Aug; 124(31):6905-6912. PubMed ID: 32658478
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Effect of Surface Roughness on the Contact Line and Splashing Dynamics of Impacting Droplets.
    Quetzeri-Santiago MA; Castrejón-Pita AA; Castrejón-Pita JR
    Sci Rep; 2019 Oct; 9(1):15030. PubMed ID: 31636321
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Droplet Bouncing and Breakup during Impact on a Microgrooved Surface.
    Malla LK; Patil ND; Bhardwaj R; Neild A
    Langmuir; 2017 Sep; 33(38):9620-9631. PubMed ID: 28846429
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evaporation of squeezed water droplets between two parallel hydrophobic/superhydrophobic surfaces.
    He X; Cheng J; Patrick Collier C; Srijanto BR; Briggs DP
    J Colloid Interface Sci; 2020 Sep; 576():127-138. PubMed ID: 32408162
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Self-Enhancement of Coalescence-Induced Droplet Jumping on Superhydrophobic Surfaces with an Asymmetric V-Groove.
    Lu D; Zhao M; Zhang H; Yang Y; Zheng Y
    Langmuir; 2020 May; 36(19):5444-5453. PubMed ID: 32311257
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Micrometer-sized water droplet impingement dynamics and evaporation on a flat dry surface.
    Briones AM; Ervin JS; Putnam SA; Byrd LW; Gschwender L
    Langmuir; 2010 Aug; 26(16):13272-86. PubMed ID: 20695569
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Surface Acoustic Waves to Control Droplet Impact onto Superhydrophobic and Slippery Liquid-Infused Porous Surfaces.
    Biroun MH; Haworth L; Agrawal P; Orme B; McHale G; Torun H; Rahmati M; Fu Y
    ACS Appl Mater Interfaces; 2021 Sep; 13(38):46076-46087. PubMed ID: 34520158
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Robust Cassie state of wetting in transparent superhydrophobic coatings.
    Tuvshindorj U; Yildirim A; Ozturk FE; Bayindir M
    ACS Appl Mater Interfaces; 2014 Jun; 6(12):9680-8. PubMed ID: 24823960
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.