These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 34814309)

  • 1. An OGI model for personalized estimation of glucose and insulin concentration in plasma.
    Wang W; Wang S; Geng Y; Qiao Y; Wu T
    Math Biosci Eng; 2021 Sep; 18(6):8499-8523. PubMed ID: 34814309
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adaptive and Personalized Plasma Insulin Concentration Estimation for Artificial Pancreas Systems.
    Hajizadeh I; Rashid M; Samadi S; Feng J; Sevil M; Hobbs N; Lazaro C; Maloney Z; Brandt R; Yu X; Turksoy K; Littlejohn E; Cengiz E; Cinar A
    J Diabetes Sci Technol; 2018 May; 12(3):639-649. PubMed ID: 29566547
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Unscented Kalman Filter estimates the plasma insulin from glucose measurement.
    Eberle C; Ament C
    Biosystems; 2011 Jan; 103(1):67-72. PubMed ID: 20934485
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Real-time estimation of plasma insulin concentration from continuous glucose monitor measurements.
    de Pereda D; Romero-Vivo S; Ricarte B; Rossetti P; Ampudia-Blasco FJ; Bondia J
    Comput Methods Biomech Biomed Engin; 2016; 19(9):934-42. PubMed ID: 26343364
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimation of plasma insulin concentration under glycemic variability using nonlinear filtering techniques.
    Avila LO; De Paula M; Sanchez-Reinoso CR
    Biosystems; 2018 Sep; 171():1-9. PubMed ID: 29935230
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ECG Denoising Using Marginalized Particle Extended Kalman Filter With an Automatic Particle Weighting Strategy.
    Hesar HD; Mohebbi M
    IEEE J Biomed Health Inform; 2017 May; 21(3):635-644. PubMed ID: 27333615
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Real-time state estimation and long-term model adaptation: a two-sided approach toward personalized diagnosis of glucose and insulin levels.
    Eberle C; Ament C
    J Diabetes Sci Technol; 2012 Sep; 6(5):1148-58. PubMed ID: 23063042
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling of nonlinear biological phenomena modeled by S-systems.
    Mansouri MM; Nounou HN; Nounou MN; Datta AA
    Math Biosci; 2014 Mar; 249():75-91. PubMed ID: 24524881
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimation of parameters for plasma glucose regulation in type-2 diabetics in presence of meal.
    Biswas P; Sutradhar A; Datta P
    IET Syst Biol; 2018 Feb; 12(1):18-25. PubMed ID: 29337286
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Considering Plasma Insulin Concentrations in Adaptive Model Predictive Control for Artificial Pancreas Systems.
    Hajizadeh I; Rashid M; Cinar A
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():4452-4455. PubMed ID: 30441339
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extended Kalman filter state estimation-based nonlinear explicit model predictive control design for blood glucose regulation of type 1 diabetic patient.
    Acharya D; Das DK
    Med Biol Eng Comput; 2022 May; 60(5):1347-1361. PubMed ID: 35274280
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Personalized State-space Modeling of Glucose Dynamics for Type 1 Diabetes Using Continuously Monitored Glucose, Insulin Dose, and Meal Intake: An Extended Kalman Filter Approach.
    Wang Q; Molenaar P; Harsh S; Freeman K; Xie J; Gold C; Rovine M; Ulbrecht J
    J Diabetes Sci Technol; 2014 Mar; 8(2):331-345. PubMed ID: 24876585
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Discriminative Kalman Filter for Bayesian Filtering with Nonlinear and Nongaussian Observation Models.
    Burkhart MC; Brandman DM; Franco B; Hochberg LR; Harrison MT
    Neural Comput; 2020 May; 32(5):969-1017. PubMed ID: 32187000
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bayesian State Estimation in Sensorimotor Systems With Particle Filtering.
    Guang H; Ji L
    IEEE Trans Neural Syst Rehabil Eng; 2020 Jul; 28(7):1528-1538. PubMed ID: 32634091
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Data-driven modeling and prediction of blood glucose dynamics: Machine learning applications in type 1 diabetes.
    Woldaregay AZ; Årsand E; Walderhaug S; Albers D; Mamykina L; Botsis T; Hartvigsen G
    Artif Intell Med; 2019 Jul; 98():109-134. PubMed ID: 31383477
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An extended Kalman filter approach to non-stationary Bayesian estimation of reduced-order vocal fold model parameters.
    Hadwin PJ; Peterson SD
    J Acoust Soc Am; 2017 Apr; 141(4):2909. PubMed ID: 28464670
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A composite model of glucagon-glucose dynamics for in silico testing of bihormonal glucose controllers.
    Herrero P; Georgiou P; Oliver N; Reddy M; Johnston D; Toumazou C
    J Diabetes Sci Technol; 2013 Jul; 7(4):941-51. PubMed ID: 23911175
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Robust KALMAN Filter State Estimation for Gene Regulatory Networks.
    Abolmasoumi AH; Mohammadian M; Mili L
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(2):1395-1405. PubMed ID: 35536813
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A nonlinear Bayesian filtering framework for ECG denoising.
    Sameni R; Shamsollahi MB; Jutten C; Clifford GD
    IEEE Trans Biomed Eng; 2007 Dec; 54(12):2172-85. PubMed ID: 18075033
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Robust nonlinear control of blood glucose in diabetic patients subject to model uncertainties.
    Farahmand B; Dehghani M; Vafamand N; Mirzaee A; Boostani R; Pieper JK
    ISA Trans; 2023 Feb; 133():353-368. PubMed ID: 35927074
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.