BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 34814316)

  • 1. Construction of the gene expression subgroups of patients with coronary artery disease through bioinformatics approach.
    Zhang B; Zeng K; Li R; Jiang H; Gao M; Zhang L; Li J; Guan R; Liu Y; Qiang Y; Yang Y
    Math Biosci Eng; 2021 Oct; 18(6):8622-8640. PubMed ID: 34814316
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Subgroup Identification with Gene Expression Profiles of Adipose Tissue in Patients with Coronary Artery Disease.
    Jiang C; Wang R; Zong B; Wei P; Lu W; Han B; Xu Y
    Int Heart J; 2021 Nov; 62(6):1199-1206. PubMed ID: 34744146
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Weighted gene co-expression network analysis identifies specific modules and hub genes related to coronary artery disease.
    Zheng PF; Chen LZ; Guan YZ; Liu P
    Sci Rep; 2021 Mar; 11(1):6711. PubMed ID: 33758323
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of key genes and crucial modules associated with coronary artery disease by bioinformatics analysis.
    Zhang X; Cheng X; Liu H; Zheng C; Rao K; Fang Y; Zhou H; Xiong S
    Int J Mol Med; 2014 Sep; 34(3):863-9. PubMed ID: 24969630
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lipid metabolism patterns and relevant clinical and molecular features of coronary artery disease patients: an integrated bioinformatic analysis.
    Liao Y; Dong Z; Liao H; Chen Y; Hu L; Yu Z; Xia Y; Zhao Y; Fan K; Ding J; Yao X; Deng T; Yang R
    Lipids Health Dis; 2022 Sep; 21(1):87. PubMed ID: 36088434
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Peripheral-blood gene expression profiling studies for coronary artery disease and its severity in Xinjiang population in China.
    Liu M; Jiang S; Ma Y; Ma J; Hassan W; Shang J
    Lipids Health Dis; 2018 Jul; 17(1):154. PubMed ID: 30021655
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coronary artery disease associated specific modules and feature genes revealed by integrative methods of WGCNA, MetaDE and machine learning.
    Wang Y; Liu T; Liu Y; Chen J; Xin B; Wu M; Cui W
    Gene; 2019 Aug; 710():122-130. PubMed ID: 31075415
    [TBL] [Abstract][Full Text] [Related]  

  • 8. lncRNA expression profiles and associated ceRNA network analyses in epicardial adipose tissue of patients with coronary artery disease.
    Wang QC; Wang ZY; Xu Q; Chen XL; Shi RZ
    Sci Rep; 2021 Jan; 11(1):1567. PubMed ID: 33452392
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Construction of genetic classification model for coronary atherosclerosis heart disease using three machine learning methods.
    Peng W; Sun Y; Zhang L
    BMC Cardiovasc Disord; 2022 Feb; 22(1):42. PubMed ID: 35151267
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrative gene ontology and network analysis of coronary artery disease associated genes suggests potential role of ErbB pathway gene EGFR.
    Ghatge M; Nair J; Sharma A; Vangala RK
    Mol Med Rep; 2018 Mar; 17(3):4253-4264. PubMed ID: 29328373
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of molecular subgroups in osteomyelitis induced by staphylococcus aureus infection through gene expression profiles.
    Shi X; Ni H; Tang L; Li M; Wu Y; Xu Y
    BMC Med Genomics; 2023 Jun; 16(1):149. PubMed ID: 37370094
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Weighted gene co-expression network analysis identifies specific modules and hub genes related to coronary artery disease.
    Liu J; Jing L; Tu X
    BMC Cardiovasc Disord; 2016 Mar; 16():54. PubMed ID: 26944061
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Potentially critical roles of TNPO1, RAP1B, ZDHHC17, and PPM1B in the progression of coronary atherosclerosis through microarray data analysis.
    Zhang X; Sun R; Liu L
    J Cell Biochem; 2019 Mar; 120(3):4301-4311. PubMed ID: 30269354
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrated analysis of gene expression changes associated with coronary artery disease.
    Miao L; Yin RX; Huang F; Yang S; Chen WX; Wu JZ
    Lipids Health Dis; 2019 Apr; 18(1):92. PubMed ID: 30961613
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioinformatics analysis identifies potential diagnostic signatures for coronary artery disease.
    Zhang D; Guan L; Li X
    J Int Med Res; 2020 Dec; 48(12):300060520979856. PubMed ID: 33356708
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of the molecular subgroups in coronary artery disease by gene expression profiles.
    Peng XY; Wang Y; Hu H; Zhang XJ; Li Q
    J Cell Physiol; 2019 Sep; 234(9):16540-16548. PubMed ID: 30805932
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of Differentially Expressed Genes in Coronary Artery Disease by Integrated Microarray Analysis.
    Balashanmugam MV; Shivanandappa TB; Nagarethinam S; Vastrad B; Vastrad C
    Biomolecules; 2019 Dec; 10(1):. PubMed ID: 31881747
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of the autophagy gene expression profile of pancreatic cancer based on autophagy-related protein microtubule-associated protein 1A/1B-light chain 3.
    Yang YH; Zhang YX; Gui Y; Liu JB; Sun JJ; Fan H
    World J Gastroenterol; 2019 May; 25(17):2086-2098. PubMed ID: 31114135
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrated microRNA‑gene analysis of coronary artery disease based on miRNA and gene expression profiles.
    Xu X; Li H
    Mol Med Rep; 2016 Apr; 13(4):3063-73. PubMed ID: 26936111
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of Key Genes as Early Warning Signals of Acute Myocardial Infarction Based on Weighted Gene Correlation Network Analysis and Dynamic Network Biomarker Algorithm.
    Song C; Qiao Z; Chen L; Ge J; Zhang R; Yuan S; Bian X; Wang C; Liu Q; Jia L; Fu R; Dou K
    Front Immunol; 2022; 13():879657. PubMed ID: 35795669
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.