These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 34814319)

  • 1. New insights on novel coronavirus 2019-nCoV/SARS-CoV-2 modelling in the aspect of fractional derivatives and fixed points.
    Panda SK; Atangana A; Nieto JJ
    Math Biosci Eng; 2021 Oct; 18(6):8683-8726. PubMed ID: 34814319
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis and comparative study of a deterministic mathematical model of SARS-COV-2 with fractal-fractional operators: a case study.
    Kubra KT; Ali R; Alqahtani RT; Gulshan S; Iqbal Z
    Sci Rep; 2024 Mar; 14(1):6431. PubMed ID: 38499671
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A hybrid fractional optimal control for a novel Coronavirus (2019-nCov) mathematical model.
    Sweilam NH; Al-Mekhlafi SM; Baleanu D
    J Adv Res; 2021 Sep; 32():149-160. PubMed ID: 32864171
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Applying fixed point methods and fractional operators in the modelling of novel coronavirus 2019-nCoV/SARS-CoV-2.
    Panda SK
    Results Phys; 2020 Dec; 19():103433. PubMed ID: 33042771
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of a novel coronavirus (2019-nCOV) system with variable Caputo-Fabrizio fractional order.
    Verma P; Kumar M
    Chaos Solitons Fractals; 2021 Jan; 142():110451. PubMed ID: 33519113
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mathematical modeling of coronavirus disease COVID-19 dynamics using CF and ABC non-singular fractional derivatives.
    Panwar VS; Sheik Uduman PS; Gómez-Aguilar JF
    Chaos Solitons Fractals; 2021 Apr; 145():110757. PubMed ID: 33558794
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of Newton's polynomial interpolation scheme for variable order fractional derivative with power-law kernel.
    Naveen S; Parthiban V
    Sci Rep; 2024 Jul; 14(1):16090. PubMed ID: 38997322
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A mathematical model for the dynamics of SARS-CoV-2 virus using the Caputo-Fabrizio operator.
    Khan T; Ullah R; Zaman G; Alzabut J
    Math Biosci Eng; 2021 Jul; 18(5):6095-6116. PubMed ID: 34517525
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessing the impact of SARS-CoV-2 infection on the dynamics of dengue and HIV via fractional derivatives.
    Omame A; Abbas M; Abdel-Aty AH
    Chaos Solitons Fractals; 2022 Sep; 162():112427. PubMed ID: 35844899
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Existence of solution and stability for the fractional order novel coronavirus (nCoV-2019) model.
    Hussain A; Baleanu D; Adeel M
    Adv Differ Equ; 2020; 2020(1):384. PubMed ID: 32834817
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fractional Model and Numerical Algorithms for Predicting COVID-19 with Isolation and Quarantine Strategies.
    Alla Hamou A; Azroul E; Lamrani Alaoui A
    Int J Appl Comput Math; 2021; 7(4):142. PubMed ID: 34226872
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Correction: New insights on novel coronavirus 2019-nCoV/SARS-CoV-2 modelling in the aspect of fractional derivatives and fixed points.
    Panda SK; Atangana A; Nieto JJ
    Math Biosci Eng; 2022 Jan; 19(2):1588-1590. PubMed ID: 35135218
    [No Abstract]   [Full Text] [Related]  

  • 13. Analysis of SIQR type mathematical model under Atangana-Baleanu fractional differential operator.
    Liu X; Arfan M; Ur Rahman M; Fatima B
    Comput Methods Biomech Biomed Engin; 2023 Jan; 26(1):98-112. PubMed ID: 35271386
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A study on fractional HBV model through singular and non-singular derivatives.
    Kumar S; Chauhan RP; Aly AA; Momani S; Hadid S
    Eur Phys J Spec Top; 2022; 231(10):1885-1904. PubMed ID: 35251498
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A fractional differential equation model for the COVID-19 transmission by using the Caputo-Fabrizio derivative.
    Baleanu D; Mohammadi H; Rezapour S
    Adv Differ Equ; 2020; 2020(1):299. PubMed ID: 32572336
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theoretical and numerical analysis of COVID-19 pandemic model with non-local and non-singular kernels.
    Cui T; Liu P; Din A; Ali F
    Sci Rep; 2022 Oct; 12(1):18178. PubMed ID: 36307434
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On modeling of coronavirus-19 disease under Mittag-Leffler power law.
    Bushnaq S; Shah K; Alrabaiah H
    Adv Differ Equ; 2020; 2020(1):487. PubMed ID: 32934652
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the formulation of Adams-Bashforth scheme with Atangana-Baleanu-Caputo fractional derivative to model chaotic problems.
    Owolabi KM; Atangana A
    Chaos; 2019 Feb; 29(2):023111. PubMed ID: 30823722
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Numerical analysis of fractional coronavirus model with Atangana-Baleanu derivative in Liouville-Caputo sense.
    Goyal M; Saraswat AK; Prakash A
    Indian J Phys Proc Indian Assoc Cultiv Sci (2004); 2023; 97(1):147-164. PubMed ID: 35874320
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamics of Ebola Disease in the Framework of Different Fractional Derivatives.
    Muhammad Altaf K; Atangana A
    Entropy (Basel); 2019 Mar; 21(3):. PubMed ID: 33267018
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.