BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1070 related articles for article (PubMed ID: 34814332)

  • 1. Identification of potential biomarkers with colorectal cancer based on bioinformatics analysis and machine learning.
    Hammad A; Elshaer M; Tang X
    Math Biosci Eng; 2021 Oct; 18(6):8997-9015. PubMed ID: 34814332
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of biomarkers associated with diagnosis and prognosis of colorectal cancer patients based on integrated bioinformatics analysis.
    Chen L; Lu D; Sun K; Xu Y; Hu P; Li X; Xu F
    Gene; 2019 Apr; 692():119-125. PubMed ID: 30654001
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Employing bioinformatics analysis to identify hub genes and microRNAs involved in colorectal cancer.
    Ebadfardzadeh J; Kazemi M; Aghazadeh A; Rezaei M; Shirvaliloo M; Sheervalilou R
    Med Oncol; 2021 Aug; 38(9):114. PubMed ID: 34390411
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of candidate biomarkers and therapeutic drugs of colorectal cancer by integrated bioinformatics analysis.
    Zheng Z; Xie J; Xiong L; Gao M; Qin L; Dai C; Liang Z; Wang Y; Xue J; Wang Q; Wang W; Li X
    Med Oncol; 2020 Oct; 37(11):104. PubMed ID: 33078282
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The identification of a common different gene expression signature in patients with colorectal cancer.
    Zhao ZW; Fan XX; Yang LL; Song JJ; Fang SJ; Tu JF; Chen MJ; Zheng LY; Wu FZ; Zhang DK; Ying XH; Ji JS
    Math Biosci Eng; 2019 Apr; 16(4):2942-2958. PubMed ID: 31137244
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of novel biomarkers and small molecule drugs in human colorectal cancer by microarray and bioinformatics analysis.
    Chen J; Wang Z; Shen X; Cui X; Guo Y
    Mol Genet Genomic Med; 2019 Jul; 7(7):e00713. PubMed ID: 31087508
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification and clinicopathological analysis of potential p73-regulated biomarkers in colorectal cancer via integrative bioinformatics.
    Bareja C; Dwivedi K; Uboveja A; Mathur A; Kumar N; Saluja D
    Sci Rep; 2024 Apr; 14(1):9894. PubMed ID: 38688978
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identifying the key genes and microRNAs in colorectal cancer liver metastasis by bioinformatics analysis and in vitro experiments.
    Zhang T; Guo J; Gu J; Wang Z; Wang G; Li H; Wang J
    Oncol Rep; 2019 Jan; 41(1):279-291. PubMed ID: 30542696
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An integrative bioinformatics analysis of microarray data for identifying hub genes as diagnostic biomarkers of preeclampsia.
    Liu K; Fu Q; Liu Y; Wang C
    Biosci Rep; 2019 Sep; 39(9):. PubMed ID: 31416885
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioinformatic Identification of Hub Genes and Analysis of Prognostic Values in Colorectal Cancer.
    Lei X; Jing J; Zhang M; Guan B; Dong Z; Wang C
    Nutr Cancer; 2021; 73(11-12):2568-2578. PubMed ID: 33153324
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CDK1 and CDC20 overexpression in patients with colorectal cancer are associated with poor prognosis: evidence from integrated bioinformatics analysis.
    Li J; Wang Y; Wang X; Yang Q
    World J Surg Oncol; 2020 Mar; 18(1):50. PubMed ID: 32127012
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of potential therapeutic targets associated with diagnosis and prognosis of colorectal cancer patients based on integrated bioinformatics analysis.
    Sharma A; Yadav D; Rao P; Sinha S; Goswami D; Rawal RM; Shrivastava N
    Comput Biol Med; 2022 Jul; 146():105688. PubMed ID: 35680454
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of latent biomarkers in connection with progression and prognosis in oral cancer by comprehensive bioinformatics analysis.
    Reyimu A; Chen Y; Song X; Zhou W; Dai J; Jiang F
    World J Surg Oncol; 2021 Aug; 19(1):240. PubMed ID: 34384424
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of Hub Genes Associated with Tumor-Infiltrating Immune Cells and ECM Dynamics as the Potential Therapeutic Targets in Gastric Cancer through an Integrated Bioinformatic Analysis and Machine Learning Methods.
    Liu J; Cheng Z
    Comb Chem High Throughput Screen; 2023; 26(4):653-667. PubMed ID: 35996248
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrated bioinformatics analysis for the screening of hub genes and therapeutic drugs in ovarian cancer.
    Yang D; He Y; Wu B; Deng Y; Wang N; Li M; Liu Y
    J Ovarian Res; 2020 Jan; 13(1):10. PubMed ID: 31987036
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of Critical Genes and Five Prognostic Biomarkers Associated with Colorectal Cancer.
    Huang Z; Yang Q; Huang Z
    Med Sci Monit; 2018 Jul; 24():4625-4633. PubMed ID: 29973580
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of hub genes and pathways in lung metastatic colorectal cancer.
    Dai W; Guo C; Wang Y; Li Y; Xie R; Wu J; Yao B; Xie D; He L; Li Y; Huang H; Wang Y; Liu S
    BMC Cancer; 2023 Apr; 23(1):323. PubMed ID: 37024866
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A network-based predictive gene expression signature for recurrence risks in stage II colorectal cancer.
    Yang WJ; Wang HB; Wang WD; Bai PY; Lu HX; Sun CH; Liu ZS; Guan DK; Yang GW; Zhang GL
    Cancer Med; 2020 Jan; 9(1):179-193. PubMed ID: 31724326
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of Hub genes with prognostic values in colorectal cancer by integrated bioinformatics analysis.
    Li S; Li T; Shi YQ; Xu BJ; Deng YY; Sun XG
    Cancer Biomark; 2024; 40(1):27-45. PubMed ID: 38393891
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of key genes for predicting colorectal cancer prognosis by integrated bioinformatics analysis.
    Dai GP; Wang LP; Wen YQ; Ren XQ; Zuo SG
    Oncol Lett; 2020 Jan; 19(1):388-398. PubMed ID: 31897151
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 54.