These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
210 related articles for article (PubMed ID: 34814460)
1. [Probe variables: a tool for identification of unmeasured confounders in an observational study]. Hong X; Yin JC; Wang B Zhonghua Liu Xing Bing Xue Za Zhi; 2021 Apr; 42(4):735-739. PubMed ID: 34814460 [TBL] [Abstract][Full Text] [Related]
2. The impact of residual and unmeasured confounding in epidemiologic studies: a simulation study. Fewell Z; Davey Smith G; Sterne JA Am J Epidemiol; 2007 Sep; 166(6):646-55. PubMed ID: 17615092 [TBL] [Abstract][Full Text] [Related]
3. Bespoke Instruments: A new tool for addressing unmeasured confounders. Richardson DB; Tchetgen Tchetgen EJ Am J Epidemiol; 2022 Mar; 191(5):939-947. PubMed ID: 34907434 [TBL] [Abstract][Full Text] [Related]
4. The impact of unmeasured within- and between-cluster confounding on the bias of effect estimatorsof a continuous exposure. Li Y; Lee Y; Port FK; Robinson BM Stat Methods Med Res; 2020 Aug; 29(8):2119-2139. PubMed ID: 31694489 [TBL] [Abstract][Full Text] [Related]
5. Negative control exposure studies in the presence of measurement error: implications for attempted effect estimate calibration. Sanderson E; Macdonald-Wallis C; Davey Smith G Int J Epidemiol; 2018 Apr; 47(2):587-596. PubMed ID: 29088358 [TBL] [Abstract][Full Text] [Related]
6. Unifying instrumental variable and inverse probability weighting approaches for inference of causal treatment effect and unmeasured confounding in observational studies. Liu T; Hogan JW Stat Methods Med Res; 2021 Mar; 30(3):671-686. PubMed ID: 33213292 [TBL] [Abstract][Full Text] [Related]
7. Sensitivity analysis for the effects of multiple unmeasured confounders. Groenwold RH; Sterne JA; Lawlor DA; Moons KG; Hoes AW; Tilling K Ann Epidemiol; 2016 Sep; 26(9):605-11. PubMed ID: 27576907 [TBL] [Abstract][Full Text] [Related]
8. Robust Machine Learning for Treatment Effects in Multilevel Observational Studies Under Cluster-level Unmeasured Confounding. Suk Y; Kang H Psychometrika; 2022 Mar; 87(1):310-343. PubMed ID: 34652613 [TBL] [Abstract][Full Text] [Related]
9. Bayesian sensitivity analysis for unmeasured confounding in causal mediation analysis. McCandless LC; Somers JM Stat Methods Med Res; 2019 Feb; 28(2):515-531. PubMed ID: 28882092 [TBL] [Abstract][Full Text] [Related]
10. Summarizing causal differences in survival curves in the presence of unmeasured confounding. Martínez-Camblor P; MacKenzie TA; Staiger DO; Goodney PP; O'Malley AJ Int J Biostat; 2020 Sep; 17(2):223-240. PubMed ID: 32946418 [TBL] [Abstract][Full Text] [Related]
11. How unmeasured confounding in a competing risks setting can affect treatment effect estimates in observational studies. Barrowman MA; Peek N; Lambie M; Martin GP; Sperrin M BMC Med Res Methodol; 2019 Jul; 19(1):166. PubMed ID: 31366331 [TBL] [Abstract][Full Text] [Related]
12. Bias formulas for sensitivity analysis of unmeasured confounding for general outcomes, treatments, and confounders. Vanderweele TJ; Arah OA Epidemiology; 2011 Jan; 22(1):42-52. PubMed ID: 21052008 [TBL] [Abstract][Full Text] [Related]
13. Assessing the impact of unmeasured confounders for credible and reliable real-world evidence. Zhang X; Stamey JD; Mathur MB Pharmacoepidemiol Drug Saf; 2020 Oct; 29(10):1219-1227. PubMed ID: 32929830 [TBL] [Abstract][Full Text] [Related]
14. [Confounder adjustment in observational comparative effectiveness researches: (2) statistical adjustment approaches for unmeasured confounders]. Huang LL; Wei YY; Chen F Zhonghua Liu Xing Bing Xue Za Zhi; 2019 Nov; 40(11):1450-1455. PubMed ID: 31838820 [TBL] [Abstract][Full Text] [Related]
15. Instrumental variable methods for causal inference. Baiocchi M; Cheng J; Small DS Stat Med; 2014 Jun; 33(13):2297-340. PubMed ID: 24599889 [TBL] [Abstract][Full Text] [Related]
16. Addressing unmeasured confounders in cohort studies: Instrumental variable method for a time-fixed exposure on an outcome trajectory. Le Bourdonnec K; Samieri C; Tzourio C; Mura T; Mishra A; Trégouët DA; Proust-Lima C Biom J; 2024 Jan; 66(1):e2200358. PubMed ID: 38098309 [TBL] [Abstract][Full Text] [Related]
17. Assessing the impact of unmeasured confounding for binary outcomes using confounding functions. Kasza J; Wolfe R; Schuster T Int J Epidemiol; 2017 Aug; 46(4):1303-1311. PubMed ID: 28338913 [TBL] [Abstract][Full Text] [Related]
18. A comparison of confounder selection and adjustment methods for estimating causal effects using large healthcare databases. Benasseur I; Talbot D; Durand M; Holbrook A; Matteau A; Potter BJ; Renoux C; Schnitzer ME; Tarride JÉ; Guertin JR Pharmacoepidemiol Drug Saf; 2022 Apr; 31(4):424-433. PubMed ID: 34953160 [TBL] [Abstract][Full Text] [Related]
19. Inclusion of binary proxy variables in logistic regression improves treatment effect estimation in observational studies in the presence of binary unmeasured confounding variables. Rosenbaum C; Yu Q; Buzhardt S; Sutton E; Chapple AG Pharm Stat; 2023; 22(6):995-1015. PubMed ID: 37986712 [TBL] [Abstract][Full Text] [Related]
20. Estimating Bias Due to Unmeasured Confounding in Oral Health Epidemiology. Mittinty MN Community Dent Health; 2020 Feb; 37(1):84-89. PubMed ID: 32031350 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]