These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 34814683)

  • 1. A Core-Valence Separated Similarity Transformed EOM-CCSD Method for Core-Excitation Spectra.
    Ranga S; Dutta AK
    J Chem Theory Comput; 2021 Dec; 17(12):7428-7446. PubMed ID: 34814683
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploring the Accuracy of a Low Scaling Similarity Transformed Equation of Motion Method for Vertical Excitation Energies.
    Dutta AK; Nooijen M; Neese F; Izsák R
    J Chem Theory Comput; 2018 Jan; 14(1):72-91. PubMed ID: 29206453
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accurate Core-Excited States via Inclusion of Core Triple Excitations in Similarity-Transformed Equation-of-Motion Theory.
    Simons M; Matthews DA
    J Chem Theory Comput; 2022 Jun; 18(6):3759-3765. PubMed ID: 35536592
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dyson orbitals within the fc-CVS-EOM-CCSD framework: theory and application to X-ray photoelectron spectroscopy of ground and excited states.
    Vidal ML; Krylov AI; Coriani S
    Phys Chem Chem Phys; 2020 Feb; 22(5):2693-2703. PubMed ID: 31696165
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New and Efficient Equation-of-Motion Coupled-Cluster Framework for Core-Excited and Core-Ionized States.
    Vidal ML; Feng X; Epifanovsky E; Krylov AI; Coriani S
    J Chem Theory Comput; 2019 May; 15(5):3117-3133. PubMed ID: 30964297
    [TBL] [Abstract][Full Text] [Related]  

  • 6.
    Rishi V; Ravi M; Perera A; Bartlett RJ
    J Phys Chem A; 2023 Jan; 127(3):828-834. PubMed ID: 36640093
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Similarity transformed equation of motion coupled-cluster theory based on an unrestricted Hartree-Fock reference for applications to high-spin open-shell systems.
    Huntington LMJ; Krupička M; Neese F; Izsák R
    J Chem Phys; 2017 Nov; 147(17):174104. PubMed ID: 29117690
    [TBL] [Abstract][Full Text] [Related]  

  • 8. How to stay out of trouble in RIXS calculations within equation-of-motion coupled-cluster damped response theory? Safe hitchhiking in the excitation manifold by means of core-valence separation.
    Nanda KD; Vidal ML; Faber R; Coriani S; Krylov AI
    Phys Chem Chem Phys; 2020 Feb; 22(5):2629-2641. PubMed ID: 31599295
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relativistic EOM-CCSD for Core-Excited and Core-Ionized State Energies Based on the Four-Component Dirac-Coulomb(-Gaunt) Hamiltonian.
    Halbert L; Vidal ML; Shee A; Coriani S; Severo Pereira Gomes A
    J Chem Theory Comput; 2021 Jun; 17(6):3583-3598. PubMed ID: 33944570
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cherry-picking resolvents: A general strategy for convergent coupled-cluster damped response calculations of core-level spectra.
    Nanda KD; Krylov AI
    J Chem Phys; 2020 Oct; 153(14):141104. PubMed ID: 33086843
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cherry-Picking Resolvents: Recovering the Valence Contribution in X-ray Two-Photon Absorption within the Core-Valence-Separated Equation-of-Motion Coupled-Cluster Response Theory.
    Andersen JH; Nanda KD; Krylov AI; Coriani S
    J Chem Theory Comput; 2022 Oct; 18(10):6189-6202. PubMed ID: 36084326
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Similarity-transformed equation-of-motion vibrational coupled-cluster theory.
    Faucheaux JA; Nooijen M; Hirata S
    J Chem Phys; 2018 Feb; 148(5):054104. PubMed ID: 29421891
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Excited states via coupled cluster theory without equation-of-motion methods: Seeking higher roots with application to doubly excited states and double core hole states.
    Lee J; Small DW; Head-Gordon M
    J Chem Phys; 2019 Dec; 151(21):214103. PubMed ID: 31822103
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Equation-of-Motion Coupled-Cluster Theory to Model L-Edge X-ray Absorption and Photoelectron Spectra.
    Vidal ML; Pokhilko P; Krylov AI; Coriani S
    J Phys Chem Lett; 2020 Oct; 11(19):8314-8321. PubMed ID: 32897075
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Equation-of-Motion Coupled-Cluster Theory for Excitation Energies of Closed-Shell Systems with Spin-Orbit Coupling.
    Wang Z; Tu Z; Wang F
    J Chem Theory Comput; 2014 Dec; 10(12):5567-76. PubMed ID: 26583239
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automatic active space selection for the similarity transformed equations of motion coupled cluster method.
    Dutta AK; Nooijen M; Neese F; Izsák R
    J Chem Phys; 2017 Feb; 146(7):074103. PubMed ID: 28228040
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accurate Computation of the Absorption Spectrum of Chlorophyll
    Sirohiwal A; Berraud-Pache R; Neese F; Izsák R; Pantazis DA
    J Phys Chem B; 2020 Oct; 124(40):8761-8771. PubMed ID: 32930590
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The simulation of X-ray absorption spectra from ground and excited electronic states using core-valence separated DFT/MRCI.
    Seidu I; Neville SP; Kleinschmidt M; Heil A; Marian CM; Schuurman MS
    J Chem Phys; 2019 Oct; 151(14):144104. PubMed ID: 31615239
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of multireference equation of motion coupled-cluster theory to transition metal complexes and an orbital selection scheme for the efficient calculation of excitation energies.
    Huntington LM; Nooijen M
    J Chem Phys; 2015 May; 142(19):194111. PubMed ID: 26001451
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A New Benchmark Set for Excitation Energy of Charge Transfer States: Systematic Investigation of Coupled Cluster Type Methods.
    Kozma B; Tajti A; Demoulin B; Izsák R; Nooijen M; Szalay PG
    J Chem Theory Comput; 2020 Jul; 16(7):4213-4225. PubMed ID: 32502351
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.