These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 34814704)

  • 1. Organic nanoparticle tracking during pharmacokinetic studies.
    Bonnet S; Elfatairi R; Franconi F; Roger E; Legeay S
    Nanomedicine (Lond); 2021 Dec; 16(28):2539-2536. PubMed ID: 34814704
    [TBL] [Abstract][Full Text] [Related]  

  • 2. FRET as the tool for in vivo nanomedicine tracking.
    Kaeokhamloed N; Legeay S; Roger E
    J Control Release; 2022 Sep; 349():156-173. PubMed ID: 35779657
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of Förster Resonance Energy Transfer (FRET) technique to elucidate intracellular and In Vivo biofate of nanomedicines.
    Chen T; He B; Tao J; He Y; Deng H; Wang X; Zheng Y
    Adv Drug Deliv Rev; 2019 Mar; 143():177-205. PubMed ID: 31201837
    [TBL] [Abstract][Full Text] [Related]  

  • 4. FRET Ratiometric Nanoprobes for Nanoparticle Monitoring.
    Yang G; Liu Y; Teng J; Zhao CX
    Biosensors (Basel); 2021 Dec; 11(12):. PubMed ID: 34940262
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In Vivo FRET Imaging to Predict the Risk Associated with Hepatic Accumulation of Squalene-Based Prodrug Nanoparticles.
    Cayre F; Mura S; Andreiuk B; Sobot D; Gouazou S; Desmaële D; Klymchenko AS; Couvreur P
    Adv Healthc Mater; 2018 Feb; 7(3):. PubMed ID: 29195020
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intracellularly monitoring/imaging the release of doxorubicin from pH-responsive nanoparticles using Förster resonance energy transfer.
    Chen KJ; Chiu YL; Chen YM; Ho YC; Sung HW
    Biomaterials; 2011 Apr; 32(10):2586-92. PubMed ID: 21251711
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Affinity protein-based FRET tools for cellular tracking of chitosan nanoparticles and determination of the polymer degree of acetylation.
    Fuenzalida JP; Weikert T; Hoffmann S; Vila-Sanjurjo C; Moerschbacher BM; Goycoolea FM; Kolkenbrock S
    Biomacromolecules; 2014 Jul; 15(7):2532-9. PubMed ID: 24835451
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Förster Resonance Energy Transfer-Based Dual-Modal Theranostic Nanoprobe for
    Hu D; Sheng Z; Zhu M; Wang X; Yan F; Liu C; Song L; Qian M; Liu X; Zheng H
    Theranostics; 2018; 8(2):410-422. PubMed ID: 29290817
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conventional versus stealth lipid nanoparticles: formulation and in vivo fate prediction through FRET monitoring.
    Lainé AL; Gravier J; Henry M; Sancey L; Béjaud J; Pancani E; Wiber M; Texier I; Coll JL; Benoit JP; Passirani C
    J Control Release; 2014 Aug; 188():1-8. PubMed ID: 24878182
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Boronate Affinity Fluorescent Nanoparticles for Förster Resonance Energy Transfer Inhibition Assay of cis-Diol Biomolecules.
    Wang S; Ye J; Li X; Liu Z
    Anal Chem; 2016 May; 88(10):5088-96. PubMed ID: 27089186
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a Compensated Förster Resonance Energy Transfer Imaging for Improved Assessment of the Intrapulmonary Distribution of Polymeric Nanoparticles.
    Togami K; Hazama Y; Nakamura Y; Ishizawa K; Chono S
    J Pharm Sci; 2023 Oct; 112(10):2696-2702. PubMed ID: 37478971
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiscale Live Imaging Using Förster Resonance Energy Transfer (FRET) for Evaluating the Biological Behavior of Nanoparticles as Drug Carriers.
    Ishizawa K; Togami K; Tada H; Chono S
    J Pharm Sci; 2020 Dec; 109(12):3608-3616. PubMed ID: 32926888
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorescent nanoparticles for the accurate detection of drug delivery.
    Priem B; Tian C; Tang J; Zhao Y; Mulder WJ
    Expert Opin Drug Deliv; 2015; 12(12):1881-94. PubMed ID: 26292712
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DNA-Functionalized Dye-Loaded Polymeric Nanoparticles: Ultrabright FRET Platform for Amplified Detection of Nucleic Acids.
    Melnychuk N; Klymchenko AS
    J Am Chem Soc; 2018 Aug; 140(34):10856-10865. PubMed ID: 30067022
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluorescence resonance energy transfer in a binary organic nanoparticle system and its application.
    Wu M; Xu X; Wang J; Li L
    ACS Appl Mater Interfaces; 2015 Apr; 7(15):8243-50. PubMed ID: 25823879
    [TBL] [Abstract][Full Text] [Related]  

  • 16. FRET imaging approaches for in vitro and in vivo characterization of synthetic lipid nanoparticles.
    Gravier J; Sancey L; Hirsjärvi S; Rustique E; Passirani C; Benoît JP; Coll JL; Texier I
    Mol Pharm; 2014 Sep; 11(9):3133-44. PubMed ID: 25098740
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Niche nanoparticle-based FRET assay for bleomycin detection via DNA scission.
    Pei H; Zheng Y; Kong R; Xia L; Qu F
    Biosens Bioelectron; 2016 Nov; 85():76-82. PubMed ID: 27155119
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrabright Fluorescent Polymeric Nanoparticles with a Stealth Pluronic Shell for Live Tracking in the Mouse Brain.
    Khalin I; Heimburger D; Melnychuk N; Collot M; Groschup B; Hellal F; Reisch A; Plesnila N; Klymchenko AS
    ACS Nano; 2020 Aug; 14(8):9755-9770. PubMed ID: 32680421
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of biocompatible polymeric nanoparticles for in vivo NIR and FRET imaging.
    Wagh A; Qian SY; Law B
    Bioconjug Chem; 2012 May; 23(5):981-92. PubMed ID: 22482883
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A quantitative protocol for intensity-based live cell FRET imaging.
    Kaminski CF; Rees EJ; Schierle GS
    Methods Mol Biol; 2014; 1076():445-54. PubMed ID: 24108638
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.