These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
23. CDK9 inhibition strategy defines distinct sets of target genes. Garriga J; Graña X BMC Res Notes; 2014 May; 7():301. PubMed ID: 24886624 [TBL] [Abstract][Full Text] [Related]
24. Pharmacological targeting of CDK9 in cardiac hypertrophy. Krystof V; Chamrád I; Jorda R; Kohoutek J Med Res Rev; 2010 Jul; 30(4):646-66. PubMed ID: 19757441 [TBL] [Abstract][Full Text] [Related]
25. T-loop phosphorylated Cdk9 localizes to nuclear speckle domains which may serve as sites of active P-TEFb function and exchange between the Brd4 and 7SK/HEXIM1 regulatory complexes. Dow EC; Liu H; Rice AP J Cell Physiol; 2010 Jul; 224(1):84-93. PubMed ID: 20201073 [TBL] [Abstract][Full Text] [Related]
26. Discovery of coumarin derivatives as potent and selective cyclin-dependent kinase 9 (CDK9) inhibitors with high antitumour activity. Xu J; Li H; Wang X; Huang J; Li S; Liu C; Dong R; Zhu G; Duan C; Jiang F; Zhang Y; Zhu Y; Zhang T; Chen Y; Tang W; Lu T Eur J Med Chem; 2020 Aug; 200():112424. PubMed ID: 32447197 [TBL] [Abstract][Full Text] [Related]
27. Discovery and SAR of novel pyrazolo[1,5-a]pyrimidines as inhibitors of CDK9. Phillipson LJ; Segal DH; Nero TL; Parker MW; Wan SS; de Silva M; Guthridge MA; Wei AH; Burns CJ Bioorg Med Chem; 2015 Oct; 23(19):6280-96. PubMed ID: 26349627 [TBL] [Abstract][Full Text] [Related]
28. Selective degradation of CDK6 by a palbociclib based PROTAC. Rana S; Bendjennat M; Kour S; King HM; Kizhake S; Zahid M; Natarajan A Bioorg Med Chem Lett; 2019 Jun; 29(11):1375-1379. PubMed ID: 30935795 [TBL] [Abstract][Full Text] [Related]
29. Perspective of cyclin-dependent kinase 9 (CDK9) as a drug target. Krystof V; Baumli S; Fürst R Curr Pharm Des; 2012; 18(20):2883-90. PubMed ID: 22571657 [TBL] [Abstract][Full Text] [Related]
30. Bromodomain-containing-protein-4 and cyclin-dependent-kinase-9 inhibitors interact synergistically in vitro and combined treatment reduces post-traumatic osteoarthritis severity in mice. Fukui T; Yik JHN; Doyran B; Davis J; Haudenschild AK; Adamopoulos IE; Han L; Haudenschild DR Osteoarthritis Cartilage; 2021 Jan; 29(1):68-77. PubMed ID: 33164842 [TBL] [Abstract][Full Text] [Related]
32. Application of a MYC degradation screen identifies sensitivity to CDK9 inhibitors in KRAS-mutant pancreatic cancer. Blake DR; Vaseva AV; Hodge RG; Kline MP; Gilbert TSK; Tyagi V; Huang D; Whiten GC; Larson JE; Wang X; Pearce KH; Herring LE; Graves LM; Frye SV; Emanuele MJ; Cox AD; Der CJ Sci Signal; 2019 Jul; 12(590):. PubMed ID: 31311847 [TBL] [Abstract][Full Text] [Related]
33. Overview of CDK9 as a target in cancer research. Morales F; Giordano A Cell Cycle; 2016; 15(4):519-27. PubMed ID: 26766294 [TBL] [Abstract][Full Text] [Related]
34. The CDK9/cyclin T1 subunits of P-TEFb in mouse oocytes and preimplantation embryos: a possible role in embryonic genome activation. Oqani RK; Kim HR; Diao YF; Park CS; Jin DI BMC Dev Biol; 2011 Jun; 11():33. PubMed ID: 21639898 [TBL] [Abstract][Full Text] [Related]
35. Discovery of a 2,4-disubstituted pyrrolo[1,2-f][1,2,4]triazine inhibitor (BMS-754807) of insulin-like growth factor receptor (IGF-1R) kinase in clinical development. Wittman MD; Carboni JM; Yang Z; Lee FY; Antman M; Attar R; Balimane P; Chang C; Chen C; Discenza L; Frennesson D; Gottardis MM; Greer A; Hurlburt W; Johnson W; Langley DR; Li A; Li J; Liu P; Mastalerz H; Mathur A; Menard K; Patel K; Sack J; Sang X; Saulnier M; Smith D; Stefanski K; Trainor G; Velaparthi U; Zhang G; Zimmermann K; Vyas DM J Med Chem; 2009 Dec; 52(23):7360-3. PubMed ID: 19778024 [TBL] [Abstract][Full Text] [Related]
36. Up-regulation of CDK9 kinase activity and Mcl-1 stability contributes to the acquired resistance to cyclin-dependent kinase inhibitors in leukemia. Yeh YY; Chen R; Hessler J; Mahoney E; Lehman AM; Heerema NA; Grever MR; Plunkett W; Byrd JC; Johnson AJ Oncotarget; 2015 Feb; 6(5):2667-79. PubMed ID: 25596730 [TBL] [Abstract][Full Text] [Related]
37. Identification of Atuveciclib (BAY 1143572), the First Highly Selective, Clinical PTEFb/CDK9 Inhibitor for the Treatment of Cancer. Lücking U; Scholz A; Lienau P; Siemeister G; Kosemund D; Bohlmann R; Briem H; Terebesi I; Meyer K; Prelle K; Denner K; Bömer U; Schäfer M; Eis K; Valencia R; Ince S; von Nussbaum F; Mumberg D; Ziegelbauer K; Klebl B; Choidas A; Nussbaumer P; Baumann M; Schultz-Fademrecht C; Rühter G; Eickhoff J; Brands M ChemMedChem; 2017 Nov; 12(21):1776-1793. PubMed ID: 28961375 [TBL] [Abstract][Full Text] [Related]
38. Chemically induced degradation of CDK9 by a proteolysis targeting chimera (PROTAC). Robb CM; Contreras JI; Kour S; Taylor MA; Abid M; Sonawane YA; Zahid M; Murry DJ; Natarajan A; Rana S Chem Commun (Camb); 2017 Jul; 53(54):7577-7580. PubMed ID: 28636052 [TBL] [Abstract][Full Text] [Related]
39. Structure-based design of highly selective 2,4,5-trisubstituted pyrimidine CDK9 inhibitors as anti-cancer agents. Shao H; Foley DW; Huang S; Abbas AY; Lam F; Gershkovich P; Bradshaw TD; Pepper C; Fischer PM; Wang S Eur J Med Chem; 2021 Mar; 214():113244. PubMed ID: 33581551 [TBL] [Abstract][Full Text] [Related]
40. Characterization of molecular and cellular functions of the cyclin-dependent kinase CDK9 using a novel specific inhibitor. Albert TK; Rigault C; Eickhoff J; Baumgart K; Antrecht C; Klebl B; Mittler G; Meisterernst M Br J Pharmacol; 2014 Jan; 171(1):55-68. PubMed ID: 24102143 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]