These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 34814826)

  • 41. Building an Otoscopic screening prototype tool using deep learning.
    Livingstone D; Talai AS; Chau J; Forkert ND
    J Otolaryngol Head Neck Surg; 2019 Nov; 48(1):66. PubMed ID: 31771647
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Adaptive transfer learning for EEG motor imagery classification with deep Convolutional Neural Network.
    Zhang K; Robinson N; Lee SW; Guan C
    Neural Netw; 2021 Apr; 136():1-10. PubMed ID: 33401114
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Classification of alkaloids according to the starting substances of their biosynthetic pathways using graph convolutional neural networks.
    Eguchi R; Ono N; Hirai Morita A; Katsuragi T; Nakamura S; Huang M; Altaf-Ul-Amin M; Kanaya S
    BMC Bioinformatics; 2019 Jul; 20(1):380. PubMed ID: 31288752
    [TBL] [Abstract][Full Text] [Related]  

  • 44. An efficient approach based on multi-sources information to predict circRNA-disease associations using deep convolutional neural network.
    Wang L; You ZH; Huang YA; Huang DS; Chan KCC
    Bioinformatics; 2020 Jul; 36(13):4038-4046. PubMed ID: 31793982
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Fully automatic multi-organ segmentation for head and neck cancer radiotherapy using shape representation model constrained fully convolutional neural networks.
    Tong N; Gou S; Yang S; Ruan D; Sheng K
    Med Phys; 2018 Oct; 45(10):4558-4567. PubMed ID: 30136285
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A study of learning splice sites of DNA sequence by neural networks.
    Ogura H; Agata H; Xie M; Odaka T; Furutani H
    Comput Biol Med; 1997 Jan; 27(1):67-75. PubMed ID: 9055047
    [TBL] [Abstract][Full Text] [Related]  

  • 47. aPRBind: protein-RNA interface prediction by combining sequence and I-TASSER model-based structural features learned with convolutional neural networks.
    Liu Y; Gong W; Zhao Y; Deng X; Zhang S; Li C
    Bioinformatics; 2021 May; 37(7):937-942. PubMed ID: 32821925
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Using a deep convolutional network to predict the longitudinal dispersion coefficient.
    Ghiasi B; Jodeiri A; Andik B
    J Contam Hydrol; 2021 Jun; 240():103798. PubMed ID: 33770526
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Predicting protein-ligand binding residues with deep convolutional neural networks.
    Cui Y; Dong Q; Hong D; Wang X
    BMC Bioinformatics; 2019 Feb; 20(1):93. PubMed ID: 30808287
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Inferring the Disease-Associated miRNAs Based on Network Representation Learning and Convolutional Neural Networks.
    Xuan P; Sun H; Wang X; Zhang T; Pan S
    Int J Mol Sci; 2019 Jul; 20(15):. PubMed ID: 31349729
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Assisted phase and step annotation for surgical videos.
    Lecuyer G; Ragot M; Martin N; Launay L; Jannin P
    Int J Comput Assist Radiol Surg; 2020 Apr; 15(4):673-680. PubMed ID: 32040704
    [TBL] [Abstract][Full Text] [Related]  

  • 52. DEEPCON: protein contact prediction using dilated convolutional neural networks with dropout.
    Adhikari B
    Bioinformatics; 2020 Jan; 36(2):470-477. PubMed ID: 31359036
    [TBL] [Abstract][Full Text] [Related]  

  • 53. DeepECA: an end-to-end learning framework for protein contact prediction from a multiple sequence alignment.
    Fukuda H; Tomii K
    BMC Bioinformatics; 2020 Jan; 21(1):10. PubMed ID: 31918654
    [TBL] [Abstract][Full Text] [Related]  

  • 54. MRI Gibbs-ringing artifact reduction by means of machine learning using convolutional neural networks.
    Zhang Q; Ruan G; Yang W; Liu Y; Zhao K; Feng Q; Chen W; Wu EX; Feng Y
    Magn Reson Med; 2019 Dec; 82(6):2133-2145. PubMed ID: 31373061
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Bingham deep neural and oppositional fish swarm optimized protein structure prediction.
    Nallasamy V; S M
    J Biomol Struct Dyn; 2022; 40(19):8706-8724. PubMed ID: 33955323
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Splam: a deep-learning-based splice site predictor that improves spliced alignments.
    Chao KH; Mao A; Salzberg SL; Pertea M
    bioRxiv; 2023 Jul; ():. PubMed ID: 37546880
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Early prediction of epileptic seizures using a long-term recurrent convolutional network.
    Wei X; Zhou L; Zhang Z; Chen Z; Zhou Y
    J Neurosci Methods; 2019 Nov; 327():108395. PubMed ID: 31408651
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Prediction of breast cancer molecular subtypes on DCE-MRI using convolutional neural network with transfer learning between two centers.
    Zhang Y; Chen JH; Lin Y; Chan S; Zhou J; Chow D; Chang P; Kwong T; Yeh DC; Wang X; Parajuli R; Mehta RS; Wang M; Su MY
    Eur Radiol; 2021 Apr; 31(4):2559-2567. PubMed ID: 33001309
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Convolutional neural networks with image representation of amino acid sequences for protein function prediction.
    Sara ST; Hasan MM; Ahmad A; Shatabda S
    Comput Biol Chem; 2021 Jun; 92():107494. PubMed ID: 33930742
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Pre-Trained Deep Convolutional Neural Network for Clostridioides Difficile Bacteria Cytotoxicity Classification Based on Fluorescence Images.
    Brodzicki A; Jaworek-Korjakowska J; Kleczek P; Garland M; Bogyo M
    Sensors (Basel); 2020 Nov; 20(23):. PubMed ID: 33255305
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.