BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 34815086)

  • 1. Aeration and dissolution behavior of oxygen nanobubbles in water.
    Xue S; Zhang Y; Marhaba T; Zhang W
    J Colloid Interface Sci; 2022 Mar; 609():584-591. PubMed ID: 34815086
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stability of Oxygen Nanobubbles under Freshwater Conditions.
    Soyluoglu M; Kim D; Zaker Y; Karanfil T
    Water Res; 2021 Nov; 206():117749. PubMed ID: 34678695
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probing Internal Pressures and Long-Term Stability of Nanobubbles in Water.
    Shi X; Xue S; Marhaba T; Zhang W
    Langmuir; 2021 Feb; 37(7):2514-2522. PubMed ID: 33538170
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanobubbles produced by nanopores to probe gas-liquid mass transfer characteristics.
    Sharma H; Nirmalkar N; Zhang W
    J Colloid Interface Sci; 2024 Jul; 665():274-285. PubMed ID: 38531273
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of a Model to Determine the Baseline Mass Transfer Coefficient in Bioreactors (Aeration Tanks).
    Lee J
    Water Environ Res; 2018 Dec; 90(12):2126-2140. PubMed ID: 30045781
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of bubble and free surface oxygen transfer on diffused aeration systems.
    DeMoyer CD; Schierholz EL; Gulliver JS; Wilhelms SC
    Water Res; 2003 Apr; 37(8):1890-904. PubMed ID: 12697232
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A modelling approach to explore the optimum bubble size for micro-nanobubble aeration.
    Fan W; Li Y; Lyu T; Yu J; Chen Z; Jarvis P; Huo Y; Xiao D; Huo M
    Water Res; 2023 Jan; 228(Pt A):119360. PubMed ID: 36402060
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bulk nanobubbles: Production and investigation of their formation/stability mechanism.
    Michailidi ED; Bomis G; Varoutoglou A; Kyzas GZ; Mitrikas G; Mitropoulos AC; Efthimiadou EK; Favvas EP
    J Colloid Interface Sci; 2020 Mar; 564():371-380. PubMed ID: 31918204
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of Bulk Nanobubbles Formed by Using a Porous Alumina Film with Ordered Nanopores.
    Ma T; Kimura Y; Yamamoto H; Feng X; Hirano-Iwata A; Niwano M
    J Phys Chem B; 2020 Jun; 124(24):5067-5072. PubMed ID: 32437155
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unlocking the Potential of Nanobubbles: Achieving Exceptional Gas Efficiency in Electrogeneration of Hydrogen Peroxide.
    Magdaleno AL; Cerrón-Calle GA; Dos Santos AJ; Lanza MRV; Apul OG; Garcia-Segura S
    Small; 2024 Jan; 20(3):e2304547. PubMed ID: 37621039
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improvement of oxygen transfer efficiency in aerated ponds using liquid-film-assisted approach.
    Zhu H; Imai T; Tani K; Ukita M; Sekine M; Higuchi T; Zhang Z
    Water Sci Technol; 2007; 55(11):183-91. PubMed ID: 17591211
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High temperature and pressure inside a dissolving oxygen nanobubble.
    Yasui K; Tuziuti T; Kanematsu W
    Ultrason Sonochem; 2019 Jul; 55():308-312. PubMed ID: 30686604
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfluidic Generation of Monodisperse Nanobubbles by Selective Gas Dissolution.
    Xu J; Salari A; Wang Y; He X; Kerr L; Darbandi A; de Leon AC; Exner AA; Kolios MC; Yuen D; Tsai SSH
    Small; 2021 May; 17(20):e2100345. PubMed ID: 33811441
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanobubble applications in aquaculture industry for improving harvest yield, wastewater treatment, and disease control.
    Yaparatne S; Morón-López J; Bouchard D; Garcia-Segura S; Apul OG
    Sci Total Environ; 2024 Jun; 931():172687. PubMed ID: 38663593
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generation of nanobubbles by ceramic membrane filters: The dependence of bubble size and zeta potential on surface coating, pore size and injected gas pressure.
    Ahmed AKA; Sun C; Hua L; Zhang Z; Zhang Y; Zhang W; Marhaba T
    Chemosphere; 2018 Jul; 203():327-335. PubMed ID: 29626810
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microbubble- and nanobubble-aeration for upgrading conventional activated sludge process: A review.
    Zhou S; Liu M; Chen B; Sun L; Lu H
    Bioresour Technol; 2022 Oct; 362():127826. PubMed ID: 36029987
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancement of oxygen transfer efficiency in diffused aeration systems using liquid-film-forming apparatus.
    Zhu H; Imai T; Tani K; Ukita M; Sekine M; Higuchi T; Zhang ZJ
    Environ Technol; 2007 May; 28(5):511-9. PubMed ID: 17615960
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of Aeration Microporous Aperture on Oxygen Mass Transfer Efficiency in Terms of Bubble Motion Flow Field.
    Lu C; Cheng W; Zhou S; Wang M; Liu J; Wan T
    ACS Omega; 2021 Feb; 6(4):2790-2799. PubMed ID: 33553897
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanobubble Technologies Offer Opportunities To Improve Water Treatment.
    Atkinson AJ; Apul OG; Schneider O; Garcia-Segura S; Westerhoff P
    Acc Chem Res; 2019 May; 52(5):1196-1205. PubMed ID: 30958672
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of preparation time and aeration rate on the properties of bulk micro-nanobubble water using hydrodynamic cavitation.
    Zhou S; Nazari S; Hassanzadeh A; Bu X; Ni C; Peng Y; Xie G; He Y
    Ultrason Sonochem; 2022 Mar; 84():105965. PubMed ID: 35240410
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.