These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 34815411)

  • 1. Programmable microbial ink for 3D printing of living materials produced from genetically engineered protein nanofibers.
    Duraj-Thatte AM; Manjula-Basavanna A; Rutledge J; Xia J; Hassan S; Sourlis A; Rubio AG; Lesha A; Zenkl M; Kan A; Weitz DA; Zhang YS; Joshi NS
    Nat Commun; 2021 Nov; 12(1):6600. PubMed ID: 34815411
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrogel Bioink Reinforcement for Additive Manufacturing: A Focused Review of Emerging Strategies.
    Chimene D; Kaunas R; Gaharwar AK
    Adv Mater; 2020 Jan; 32(1):e1902026. PubMed ID: 31599073
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioinspired 3D printable pectin-nanocellulose ink formulations.
    Cernencu AI; Lungu A; Stancu IC; Serafim A; Heggset E; Syverud K; Iovu H
    Carbohydr Polym; 2019 Sep; 220():12-21. PubMed ID: 31196530
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tailoring nanostructure and bioactivity of 3D-printable hydrogels with self-assemble peptides amphiphile (PA) for promoting bile duct formation.
    Yan M; Lewis PL; Shah RN
    Biofabrication; 2018 Jun; 10(3):035010. PubMed ID: 29848794
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Complex Living Materials Made by Light-Based Printing of Genetically Programmed Bacteria.
    Binelli MR; Kan A; Rozas LEA; Pisaturo G; Prakash N; Studart AR
    Adv Mater; 2023 Feb; 35(6):e2207483. PubMed ID: 36444840
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design and Printing Strategies in 3D Bioprinting of Cell-Hydrogels: A Review.
    Lee JM; Yeong WY
    Adv Healthc Mater; 2016 Nov; 5(22):2856-2865. PubMed ID: 27767258
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineered Living Structures with Shape-Morphing Capability Enabled by 4D Printing with Functional Bacteria.
    Liu S; Yang M; Smarr C; Zhang G; Barton H; Xu W
    ACS Appl Bio Mater; 2024 May; 7(5):3247-3257. PubMed ID: 38648508
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetically Programmable Self-Regenerating Bacterial Hydrogels.
    Duraj-Thatte AM; Courchesne ND; Praveschotinunt P; Rutledge J; Lee Y; Karp JM; Joshi NS
    Adv Mater; 2019 Oct; 31(40):e1901826. PubMed ID: 31402514
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transparent and Cell-Guiding Cellulose Nanofiber 3D Printing Bioinks.
    Radeke C; Pons R; Mihajlovic M; Knudsen JR; Butdayev S; Kempen PJ; Segeritz CP; Andresen TL; Pehmøller CK; Jensen TE; Lind JU
    ACS Appl Mater Interfaces; 2023 Jan; 15(2):2564-2577. PubMed ID: 36598781
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D Printing Method for Tough Multifunctional Particle-Based Double-Network Hydrogels.
    Zhao D; Liu Y; Liu B; Chen Z; Nian G; Qu S; Yang W
    ACS Appl Mater Interfaces; 2021 Mar; 13(11):13714-13723. PubMed ID: 33720679
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulations of 3D bioprinting: predicting bioprintability of nanofibrillar inks.
    Göhl J; Markstedt K; Mark A; Håkansson K; Gatenholm P; Edelvik F
    Biofabrication; 2018 Jun; 10(3):034105. PubMed ID: 29809162
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D Bioprinting of Diatom-Laden Living Materials for Water Quality Assessment.
    Boons R; Siqueira G; Grieder F; Kim SJ; Giovanoli D; Zimmermann T; Nyström G; Coulter FB; Studart AR
    Small; 2023 Dec; 19(50):e2300771. PubMed ID: 37691091
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Employing PEG crosslinkers to optimize cell viability in gel phase bioinks and tailor post printing mechanical properties.
    Rutz AL; Gargus ES; Hyland KE; Lewis PL; Setty A; Burghardt WR; Shah RN
    Acta Biomater; 2019 Nov; 99():121-132. PubMed ID: 31539655
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bacterial Growth, Communication, and Guided Chemotaxis in 3D-Bioprinted Hydrogel Environments.
    Müller J; Jäkel AC; Richter J; Eder M; Falgenhauer E; Simmel FC
    ACS Appl Mater Interfaces; 2022 Apr; 14(14):15871-15880. PubMed ID: 35349260
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D printing of cell-laden electroconductive bioinks for tissue engineering applications.
    Rastin H; Zhang B; Bi J; Hassan K; Tung TT; Losic D
    J Mater Chem B; 2020 Jul; 8(27):5862-5876. PubMed ID: 32558857
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D Coaxial Printing Tough and Elastic Hydrogels for Tissue Engineering Using a Catechol Functionalized Ink System.
    Zhou Y; Yue Z; Chen Z; Wallace G
    Adv Healthc Mater; 2020 Dec; 9(24):e2001342. PubMed ID: 33103357
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D Printing for the Fabrication of Biofilm-Based Functional Living Materials.
    Balasubramanian S; Aubin-Tam ME; Meyer AS
    ACS Synth Biol; 2019 Jul; 8(7):1564-1567. PubMed ID: 31319670
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D Bioprinting of Self-Standing Silk-Based Bioink.
    Zheng Z; Wu J; Liu M; Wang H; Li C; Rodriguez MJ; Li G; Wang X; Kaplan DL
    Adv Healthc Mater; 2018 Mar; 7(6):e1701026. PubMed ID: 29292585
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rheological properties of cellulose nanofiber hydrogel for high-fidelity 3D printing.
    Shin S; Hyun J
    Carbohydr Polym; 2021 Jul; 263():117976. PubMed ID: 33858573
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploitation of Cationic Silica Nanoparticles for Bioprinting of Large-Scale Constructs with High Printing Fidelity.
    Lee M; Bae K; Guillon P; Chang J; Arlov Ø; Zenobi-Wong M
    ACS Appl Mater Interfaces; 2018 Nov; 10(44):37820-37828. PubMed ID: 30360117
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.