BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 34815422)

  • 1. RNA G-quadruplex structures control ribosomal protein production.
    Varshney D; Cuesta SM; Herdy B; Abdullah UB; Tannahill D; Balasubramanian S
    Sci Rep; 2021 Nov; 11(1):22735. PubMed ID: 34815422
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RNA G-quadruplexes at upstream open reading frames cause DHX36- and DHX9-dependent translation of human mRNAs.
    Murat P; Marsico G; Herdy B; Ghanbarian AT; Portella G; Balasubramanian S
    Genome Biol; 2018 Dec; 19(1):229. PubMed ID: 30591072
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The G-quadruplex (G4) resolvase DHX36 efficiently and specifically disrupts DNA G4s via a translocation-based helicase mechanism.
    Yangyuoru PM; Bradburn DA; Liu Z; Xiao TS; Russell R
    J Biol Chem; 2018 Feb; 293(6):1924-1932. PubMed ID: 29269411
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The DEXH protein product of the DHX36 gene is the major source of tetramolecular quadruplex G4-DNA resolving activity in HeLa cell lysates.
    Vaughn JP; Creacy SD; Routh ED; Joyner-Butt C; Jenkins GS; Pauli S; Nagamine Y; Akman SA
    J Biol Chem; 2005 Nov; 280(46):38117-20. PubMed ID: 16150737
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Novel G-Quadruplex Binding Protein in Yeast-Slx9.
    Götz S; Pandey S; Bartsch S; Juranek S; Paeschke K
    Molecules; 2019 May; 24(9):. PubMed ID: 31067825
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stimulation of ribosomal frameshifting by RNA G-quadruplex structures.
    Yu CH; Teulade-Fichou MP; Olsthoorn RC
    Nucleic Acids Res; 2014 Feb; 42(3):1887-92. PubMed ID: 24178029
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DHX36 prevents the accumulation of translationally inactive mRNAs with G4-structures in untranslated regions.
    Sauer M; Juranek SA; Marks J; De Magis A; Kazemier HG; Hilbig D; Benhalevy D; Wang X; Hafner M; Paeschke K
    Nat Commun; 2019 Jun; 10(1):2421. PubMed ID: 31160600
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structurally diverse G-quadruplexes as the noncanonical nucleic acid drug target for live cell imaging and antibacterial study.
    Zheng BX; Yu J; Long W; Chan KH; Leung AS; Wong WL
    Chem Commun (Camb); 2023 Feb; 59(11):1415-1433. PubMed ID: 36636928
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detecting G4 unwinding.
    Juranek S; Paeschke K
    Methods Enzymol; 2022; 672():261-281. PubMed ID: 35934478
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single-Molecule Analysis of the Improved Variants of the G-Quadruplex Recognition Protein G4P.
    Gaur P; Bain FE; Honda M; Granger SL; Spies M
    Int J Mol Sci; 2023 Jun; 24(12):. PubMed ID: 37373425
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The cellular protein nucleolin preferentially binds long-looped G-quadruplex nucleic acids.
    Lago S; Tosoni E; Nadai M; Palumbo M; Richter SN
    Biochim Biophys Acta Gen Subj; 2017 May; 1861(5 Pt B):1371-1381. PubMed ID: 27913192
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RNAi-mediated knockdown of the Rhau helicase preferentially depletes proteins with a Guanine-quadruplex motif in the 5'-UTR of their mRNA.
    Vester K; Eravci M; Serikawa T; Schütze T; Weise C; Kurreck J
    Biochem Biophys Res Commun; 2019 Jan; 508(3):756-761. PubMed ID: 30528389
    [TBL] [Abstract][Full Text] [Related]  

  • 13. G-Quadruplexes and the DNA/RNA helicase DHX36 in health, disease, and aging.
    Antcliff A; McCullough LD; Tsvetkov AS
    Aging (Albany NY); 2021 Dec; 13(23):25578-25587. PubMed ID: 34862880
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A guanine-flipping and sequestration mechanism for G-quadruplex unwinding by RecQ helicases.
    Voter AF; Qiu Y; Tippana R; Myong S; Keck JL
    Nat Commun; 2018 Oct; 9(1):4201. PubMed ID: 30305632
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cancer-associated noncoding mutations affect RNA G-quadruplex-mediated regulation of gene expression.
    Zeraati M; Moye AL; Wong JWH; Perera D; Cowley MJ; Christ DU; Bryan TM; Dinger ME
    Sci Rep; 2017 Apr; 7(1):708. PubMed ID: 28386116
    [TBL] [Abstract][Full Text] [Related]  

  • 16. eIF4A alleviates the translational repression mediated by classical secondary structures more than by G-quadruplexes.
    Waldron JA; Raza F; Le Quesne J
    Nucleic Acids Res; 2018 Apr; 46(6):3075-3087. PubMed ID: 29471358
    [TBL] [Abstract][Full Text] [Related]  

  • 17. G-quadruplex DNA: A Longer Story.
    Monsen RC; Trent JO; Chaires JB
    Acc Chem Res; 2022 Nov; 55(22):3242-3252. PubMed ID: 36282946
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A 5' UTR GGN repeat controls localisation and translation of a potassium leak channel mRNA through G-quadruplex formation.
    Maltby CJ; Schofield JPR; Houghton SD; O'Kelly I; Vargas-Caballero M; Deinhardt K; Coldwell MJ
    Nucleic Acids Res; 2020 Sep; 48(17):9822-9839. PubMed ID: 32870280
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Guanine Nucleotide-Binding Protein-Like 1 (GNL1) binds RNA G-quadruplex structures in genes associated with Parkinson's disease.
    Turcotte MA; Garant JM; Cossette-Roberge H; Perreault JP
    RNA Biol; 2021 Sep; 18(9):1339-1353. PubMed ID: 33305682
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Template-Assembled Synthetic G-Quartets (TASQs): multiTASQing Molecular Tools for Investigating DNA and RNA G-Quadruplex Biology.
    Monchaud D
    Acc Chem Res; 2023 Feb; 56(3):350-362. PubMed ID: 36662540
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.