These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Gallium Phosphide as a Piezoelectric Platform for Quantum Optomechanics. Stockill R; Forsch M; Beaudoin G; Pantzas K; Sagnes I; Braive R; Gröblacher S Phys Rev Lett; 2019 Oct; 123(16):163602. PubMed ID: 31702356 [TBL] [Abstract][Full Text] [Related]
4. Elimination of Thermomechanical Noise in Piezoelectric Optomechanical Crystals. Ramp H; Hauer BD; Balram KC; Clark TJ; Srinivasan K; Davis JP Phys Rev Lett; 2019 Aug; 123(9):093603. PubMed ID: 31524457 [TBL] [Abstract][Full Text] [Related]
5. Design of an ultra-low mode volume piezo-optomechanical quantum transducer. Chiappina P; Banker J; Meesala S; Lake D; Wood S; Painter O Opt Express; 2023 Jul; 31(14):22914-22927. PubMed ID: 37475390 [TBL] [Abstract][Full Text] [Related]
6. Optomechanical coupling between a multilayer graphene mechanical resonator and a superconducting microwave cavity. Singh V; Bosman SJ; Schneider BH; Blanter YM; Castellanos-Gomez A; Steele GA Nat Nanotechnol; 2014 Oct; 9(10):820-4. PubMed ID: 25150717 [TBL] [Abstract][Full Text] [Related]
7. Microwave-to-optics conversion using a mechanical oscillator in its quantum groundstate. Forsch M; Stockill R; Wallucks A; Marinković I; Gärtner C; Norte RA; van Otten F; Fiore A; Srinivasan K; Gröblacher S Nat Phys; 2020; 16(1):. PubMed ID: 34795789 [TBL] [Abstract][Full Text] [Related]
8. Magnetic actuation and feedback cooling of a cavity optomechanical torque sensor. Kim PH; Hauer BD; Clark TJ; Fani Sani F; Freeman MR; Davis JP Nat Commun; 2017 Nov; 8(1):1355. PubMed ID: 29116095 [TBL] [Abstract][Full Text] [Related]
9. Slot-Mode Optomechanical Crystals: A Versatile Platform for Multimode Optomechanics. Grutter KE; Davanço MI; Srinivasan K Optica; 2015; 2(11):994-1001. PubMed ID: 26807432 [TBL] [Abstract][Full Text] [Related]
10. Large cooperativity and microkelvin cooling with a three-dimensional optomechanical cavity. Yuan M; Singh V; Blanter YM; Steele GA Nat Commun; 2015 Oct; 6():8491. PubMed ID: 26450772 [TBL] [Abstract][Full Text] [Related]
11. Converting microwave and telecom photons with a silicon photonic nanomechanical interface. Arnold G; Wulf M; Barzanjeh S; Redchenko ES; Rueda A; Hease WJ; Hassani F; Fink JM Nat Commun; 2020 Sep; 11(1):4460. PubMed ID: 32901014 [TBL] [Abstract][Full Text] [Related]
13. Optomechanical ring resonator for efficient microwave-optical frequency conversion. Chen IT; Li B; Lee S; Chakravarthi S; Fu KM; Li M Nat Commun; 2023 Nov; 14(1):7594. PubMed ID: 37990000 [TBL] [Abstract][Full Text] [Related]
14. Low Noise Opto-Electro-Mechanical Modulator for RF-to-Optical Transduction in Quantum Communications. Bonaldi M; Borrielli A; Di Giuseppe G; Malossi N; Morana B; Natali R; Piergentili P; Sarro PM; Serra E; Vitali D Entropy (Basel); 2023 Jul; 25(7):. PubMed ID: 37510034 [TBL] [Abstract][Full Text] [Related]
15. A picogram- and nanometre-scale photonic-crystal optomechanical cavity. Eichenfield M; Camacho R; Chan J; Vahala KJ; Painter O Nature; 2009 May; 459(7246):550-5. PubMed ID: 19489118 [TBL] [Abstract][Full Text] [Related]
16. Ultra-low-noise microwave to optics conversion in gallium phosphide. Stockill R; Forsch M; Hijazi F; Beaudoin G; Pantzas K; Sagnes I; Braive R; Gröblacher S Nat Commun; 2022 Nov; 13(1):6583. PubMed ID: 36323690 [TBL] [Abstract][Full Text] [Related]
17. Cavity piezo-mechanics for superconducting-nanophotonic quantum interface. Han X; Fu W; Zhong C; Zou CL; Xu Y; Sayem AA; Xu M; Wang S; Cheng R; Jiang L; Tang HX Nat Commun; 2020 Jun; 11(1):3237. PubMed ID: 32591510 [TBL] [Abstract][Full Text] [Related]
18. Multichannel cavity optomechanics for all-optical amplification of radio frequency signals. Li H; Chen Y; Noh J; Tadesse S; Li M Nat Commun; 2012; 3():1091. PubMed ID: 23033067 [TBL] [Abstract][Full Text] [Related]