These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 34815789)

  • 1. A programmable hierarchical-responsive nanoCRISPR elicits robust activation of endogenous target to treat cancer.
    Liu C; Wang N; Luo R; Li L; Yang W; Wang X; Shen M; Wu Q; Gong C
    Theranostics; 2021; 11(20):9833-9846. PubMed ID: 34815789
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protocol for Delivery of CRISPR/dCas9 Systems for Epigenetic Editing into Solid Tumors Using Lipid Nanoparticles Encapsulating RNA.
    Woodward EA; Wang E; Wallis C; Sharma R; Tie AWJ; Murthy N; Blancafort P
    Methods Mol Biol; 2024; 2842():267-287. PubMed ID: 39012601
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeting cancer epigenetics with CRISPR-dCAS9: Principles and prospects.
    Rahman MM; Tollefsbol TO
    Methods; 2021 Mar; 187():77-91. PubMed ID: 32315755
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Programmable Transcriptional Modulation with a Structured RNA-Mediated CRISPR-dCas9 Complex.
    He M; Zhou X; Li Z; Yin X; Han W; Zhou J; Sun X; Liu X; Yao D; Liang H
    J Am Chem Soc; 2022 Jul; 144(28):12690-12697. PubMed ID: 35792375
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Cellular Stress Response Induced by the CRISPR-dCas9 Activation System Is Not Heritable Through Cell Divisions.
    Johnston AD; Abdulrazak A; Sato H; Maqbool SB; Suzuki M; Greally JM; Simões-Pires CA
    CRISPR J; 2020 Jun; 3(3):188-197. PubMed ID: 33560917
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multistage Delivery Nanoparticle Facilitates Efficient CRISPR/dCas9 Activation and Tumor Growth Suppression In Vivo.
    Liu Q; Zhao K; Wang C; Zhang Z; Zheng C; Zhao Y; Zheng Y; Liu C; An Y; Shi L; Kang C; Liu Y
    Adv Sci (Weinh); 2019 Jan; 6(1):1801423. PubMed ID: 30643726
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of CRISPR-Cas9-Mediated Genome Editing for the Treatment of Myotonic Dystrophy Type 1.
    Marsh S; Hanson B; Wood MJA; Varela MA; Roberts TC
    Mol Ther; 2020 Dec; 28(12):2527-2539. PubMed ID: 33171139
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CRISPR/Cas9 technology as a potent molecular tool for gene therapy.
    Karimian A; Azizian K; Parsian H; Rafieian S; Shafiei-Irannejad V; Kheyrollah M; Yousefi M; Majidinia M; Yousefi B
    J Cell Physiol; 2019 Aug; 234(8):12267-12277. PubMed ID: 30697727
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Epigenome editing of the CFTR-locus for treatment of cystic fibrosis.
    Kabadi AM; Machlin L; Dalal N; Lee RE; McDowell I; Shah NN; Drowley L; Randell SH; Reddy TE
    J Cyst Fibros; 2022 Jan; 21(1):164-171. PubMed ID: 34049825
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcriptional regulation by CRISPR/dCas9 in common wheat.
    Zhou H; Xu L; Li F; Li Y
    Gene; 2022 Jan; 807():145919. PubMed ID: 34454034
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In Vivo Genome Editing Restores Dystrophin Expression and Cardiac Function in Dystrophic Mice.
    El Refaey M; Xu L; Gao Y; Canan BD; Adesanya TMA; Warner SC; Akagi K; Symer DE; Mohler PJ; Ma J; Janssen PML; Han R
    Circ Res; 2017 Sep; 121(8):923-929. PubMed ID: 28790199
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Establishment of Cell Lines Stably Expressing dCas9-Fusions to Address Kinetics of Epigenetic Editing.
    Goubert D; Koncz M; Kiss A; Rots MG
    Methods Mol Biol; 2018; 1767():395-415. PubMed ID: 29524148
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generation and validation of versatile inducible CRISPRi embryonic stem cell and mouse model.
    Li R; Xia X; Wang X; Sun X; Dai Z; Huo D; Zheng H; Xiong H; He A; Wu X
    PLoS Biol; 2020 Nov; 18(11):e3000749. PubMed ID: 33253175
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CRISPR-Cas9 for cancer therapy: Opportunities and challenges.
    Chen M; Mao A; Xu M; Weng Q; Mao J; Ji J
    Cancer Lett; 2019 Apr; 447():48-55. PubMed ID: 30684591
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CRISPR-Act2.0: An Improved Multiplexed System for Plant Transcriptional Activation.
    Malzahn A; Zhang Y; Qi Y
    Methods Mol Biol; 2019; 1917():83-93. PubMed ID: 30610630
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CRISPR/dCas9 for hepatic fibrosis therapy: implications and challenges.
    Luo N; Zhong W; Li J; Lu J; Dong R
    Mol Biol Rep; 2022 Dec; 49(12):11403-11408. PubMed ID: 35960410
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Robust genome editing in adult vascular endothelium by nanoparticle delivery of CRISPR-Cas9 plasmid DNA.
    Zhang X; Jin H; Huang X; Chaurasiya B; Dong D; Shanley TP; Zhao YY
    Cell Rep; 2022 Jan; 38(1):110196. PubMed ID: 34986352
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Repurposing CRISPR System for Transcriptional Activation.
    Chen M; Qi LS
    Adv Exp Med Biol; 2017; 983():147-157. PubMed ID: 28639197
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of an inducer-free, virulence gene promoter-controlled, and fluorescent reporter-labeled CRISPR interference system in
    Miah R; Johannessen M; Kjos M; Lentz CS
    Microbiol Spectr; 2024 Oct; 12(10):e0060224. PubMed ID: 39162514
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Robust Transcriptional Activation in Plants Using Multiplexed CRISPR-Act2.0 and mTALE-Act Systems.
    Lowder LG; Zhou J; Zhang Y; Malzahn A; Zhong Z; Hsieh TF; Voytas DF; Zhang Y; Qi Y
    Mol Plant; 2018 Feb; 11(2):245-256. PubMed ID: 29197638
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.