BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 34816126)

  • 21. MERR APEX-seq protocol for profiling the subcellular nascent transcriptome in mammalian cells.
    Li R; Zou P
    STAR Protoc; 2023 Mar; 4(1):102057. PubMed ID: 36853684
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Metabolic Labeling of RNAs Uncovers Hidden Features and Dynamics of the Arabidopsis Transcriptome.
    Szabo EX; Reichert P; Lehniger MK; Ohmer M; de Francisco Amorim M; Gowik U; Schmitz-Linneweber C; Laubinger S
    Plant Cell; 2020 Apr; 32(4):871-887. PubMed ID: 32060173
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nicotinamide-Containing Di- and Trinucleotides as Chemical Tools for Studies of NAD-Capped RNAs.
    Mlynarska-Cieslak A; Depaix A; Grudzien-Nogalska E; Sikorski PJ; Warminski M; Kiledjian M; Jemielity J; Kowalska J
    Org Lett; 2018 Dec; 20(23):7650-7655. PubMed ID: 30479128
    [TBL] [Abstract][Full Text] [Related]  

  • 24. High-throughput RNA-seq for allelic or locus-specific expression analysis in Arabidopsis-related species, hybrids, and allotetraploids.
    Ng DW; Shi X; Nah G; Chen ZJ
    Methods Mol Biol; 2014; 1112():33-48. PubMed ID: 24478006
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Highly efficient 5' capping of mitochondrial RNA with NAD
    Bird JG; Basu U; Kuster D; Ramachandran A; Grudzien-Nogalska E; Towheed A; Wallace DC; Kiledjian M; Temiakov D; Patel SS; Ebright RH; Nickels BE
    Elife; 2018 Dec; 7():. PubMed ID: 30526856
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Identification, Biosynthesis, and Decapping of NAD-Capped RNAs in B. subtilis.
    Frindert J; Zhang Y; Nübel G; Kahloon M; Kolmar L; Hotz-Wagenblatt A; Burhenne J; Haefeli WE; Jäschke A
    Cell Rep; 2018 Aug; 24(7):1890-1901.e8. PubMed ID: 30110644
    [TBL] [Abstract][Full Text] [Related]  

  • 27. DXO gears mRNA with alternative NAD and m
    Yang X; Cao D
    Trends Plant Sci; 2023 Oct; 28(10):1083-1085. PubMed ID: 37357082
    [TBL] [Abstract][Full Text] [Related]  

  • 28. NAD captureSeq indicates NAD as a bacterial cap for a subset of regulatory RNAs.
    Cahová H; Winz ML; Höfer K; Nübel G; Jäschke A
    Nature; 2015 Mar; 519(7543):374-7. PubMed ID: 25533955
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Identification of NAD+ capped mRNAs in Saccharomyces cerevisiae.
    Walters RW; Matheny T; Mizoue LS; Rao BS; Muhlrad D; Parker R
    Proc Natl Acad Sci U S A; 2017 Jan; 114(3):480-485. PubMed ID: 28031484
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Messenger RNA capture sequencing of extracellular RNA from human biofluids using a comprehensive set of spike-in controls.
    Hulstaert E; Decock A; Morlion A; Everaert C; Verniers K; Nuytens J; Nijs N; Schroth GP; Kuersten S; Gross SM; Mestdagh P; Vandesompele J
    STAR Protoc; 2021 Jun; 2(2):100475. PubMed ID: 33937877
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Arabidopsis DXO1 possesses deNADding and exonuclease activities and its mutation affects defense-related and photosynthetic gene expression.
    Pan S; Li KE; Huang W; Zhong H; Wu H; Wang Y; Zhang H; Cai Z; Guo H; Chen X; Xia Y
    J Integr Plant Biol; 2020 Jul; 62(7):967-983. PubMed ID: 31449356
    [TBL] [Abstract][Full Text] [Related]  

  • 32. DpCoA tagSeq: Barcoding dpCoA-Capped RNA for Direct Nanopore Sequencing via Maleimide-Thiol Reaction.
    Shao X; Zhang H; Zhu Z; Ji F; He Z; Yang Z; Xia Y; Cai Z
    Anal Chem; 2023 Jul; 95(29):11124-11131. PubMed ID: 37439785
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Analyzing the meiotic transcriptome using isolated meiocytes of Arabidopsis thaliana.
    Chen C; Retzel EF
    Methods Mol Biol; 2013; 990():203-13. PubMed ID: 23559216
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transcriptome-wide identification and functional investigation of the RDR2- and DCL3-dependent small RNAs encoded by long non-coding RNAs in
    Tang Z; Xu M; Cai J; Ma X; Qin J; Meng Y
    Plant Signal Behav; 2019; 14(8):1616518. PubMed ID: 31081714
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An 'eFP-Seq Browser' for visualizing and exploring RNA sequencing data.
    Sullivan A; Purohit PK; Freese NH; Pasha A; Esteban E; Waese J; Wu A; Chen M; Chin CY; Song R; Watharkar SR; Chan AP; Krishnakumar V; Vaughn MW; Town C; Loraine AE; Provart NJ
    Plant J; 2019 Nov; 100(3):641-654. PubMed ID: 31350781
    [TBL] [Abstract][Full Text] [Related]  

  • 36. NAD-capped RNAs - a redox cofactor meets RNA.
    Wolfram-Schauerte M; Höfer K
    Trends Biochem Sci; 2023 Feb; 48(2):142-155. PubMed ID: 36068130
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Genome-wide profiling of in vivo RNA structure at single-nucleotide resolution using structure-seq.
    Ding Y; Kwok CK; Tang Y; Bevilacqua PC; Assmann SM
    Nat Protoc; 2015 Jul; 10(7):1050-66. PubMed ID: 26086407
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Transcriptome-Wide Mapping 5-Methylcytosine by m
    Gu X; Liang Z
    Methods Mol Biol; 2019; 1933():389-394. PubMed ID: 30945199
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Transcriptome-wide high-throughput deep m(6)A-seq reveals unique differential m(6)A methylation patterns between three organs in Arabidopsis thaliana.
    Wan Y; Tang K; Zhang D; Xie S; Zhu X; Wang Z; Lang Z
    Genome Biol; 2015 Dec; 16():272. PubMed ID: 26667818
    [TBL] [Abstract][Full Text] [Related]  

  • 40. De Novo Plant Transcriptome Assembly and Annotation Using Illumina RNA-Seq Reads.
    Kerr SC; Gaiti F; Tanurdzic M
    Methods Mol Biol; 2019; 1933():265-275. PubMed ID: 30945191
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.