These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
303 related articles for article (PubMed ID: 34816932)
1. Recovery of motor function in rats with complete spinal cord injury following implantation of collagen/silk fibroin scaffold combined with human umbilical cord-mesenchymal stem cells. Deng WS; Liu XY; Ma K; Liang B; Liu YF; Wang RJ; Chen XY; Zhang S Rev Assoc Med Bras (1992); 2021 Sep; 67(9):1342-1348. PubMed ID: 34816932 [TBL] [Abstract][Full Text] [Related]
2. 3D printed collagen/silk fibroin scaffolds carrying the secretome of human umbilical mesenchymal stem cells ameliorated neurological dysfunction after spinal cord injury in rats. Chen C; Xu HH; Liu XY; Zhang YS; Zhong L; Wang YW; Xu L; Wei P; Chen YX; Liu P; Hao CR; Jia XL; Hu N; Wu XY; Gu XS; Chen LQ; Li XH Regen Biomater; 2022; 9():rbac014. PubMed ID: 35480857 [TBL] [Abstract][Full Text] [Related]
3. Cell-seeded porous silk fibroin scaffolds promotes axonal regeneration and myelination in spinal cord injury rats. You K; Chang H; Zhang F; Shen Y; Zhang Y; Cai F; Liu L; Liu X Biochem Biophys Res Commun; 2019 Jun; 514(1):273-279. PubMed ID: 31030943 [TBL] [Abstract][Full Text] [Related]
4. Implantation of nanofibrous silk scaffolds seeded with bone marrow stromal cells promotes spinal cord regeneration (6686 words). Wang XH; Tang XC; Li X; Qin JZ; Zhong WT; Wu P; Zhang F; Shen YX; Dai TT Artif Cells Nanomed Biotechnol; 2021 Dec; 49(1):699-708. PubMed ID: 34882059 [TBL] [Abstract][Full Text] [Related]
5. Implantation of regenerative complexes in traumatic brain injury canine models enhances the reconstruction of neural networks and motor function recovery. Jiang J; Dai C; Liu X; Dai L; Li R; Ma K; Xu H; Zhao F; Zhang Z; He T; Niu X; Chen X; Zhang S Theranostics; 2021; 11(2):768-788. PubMed ID: 33391504 [No Abstract] [Full Text] [Related]
6. Collagen scaffold combined with human umbilical cord-mesenchymal stem cells transplantation for acute complete spinal cord injury. Deng WS; Ma K; Liang B; Liu XY; Xu HY; Zhang J; Shi HY; Sun HT; Chen XY; Zhang S Neural Regen Res; 2020 Sep; 15(9):1686-1700. PubMed ID: 32209773 [TBL] [Abstract][Full Text] [Related]
7. A combination of mesenchymal stem cells and scaffolds promotes motor functional recovery in spinal cord injury: a systematic review and meta-analysis. Yousefifard M; Nasseri Maleki S; Askarian-Amiri S; Vaccaro AR; Chapman JR; Fehlings MG; Hosseini M; Rahimi-Movaghar V J Neurosurg Spine; 2020 Feb; 32(2):269-284. PubMed ID: 31675724 [TBL] [Abstract][Full Text] [Related]
8. Three-dimensional bioprinting collagen/silk fibroin scaffold combined with neural stem cells promotes nerve regeneration after spinal cord injury. Jiang JP; Liu XY; Zhao F; Zhu X; Li XY; Niu XG; Yao ZT; Dai C; Xu HY; Ma K; Chen XY; Zhang S Neural Regen Res; 2020 May; 15(5):959-968. PubMed ID: 31719263 [TBL] [Abstract][Full Text] [Related]
9. Knitted silk mesh-like scaffold incorporated with sponge-like regenerated silk fibroin/collagen I and seeded with mesenchymal stem cells for repairing Achilles tendon in rabbits. Tang L; Yang Y; Li Y; Yang G; Luo T; Xu Y; Zhang W Acta Bioeng Biomech; 2018; 20(4):77-87. PubMed ID: 30520436 [TBL] [Abstract][Full Text] [Related]
10. [Promotion of transplanted collagen scaffolds combined with brain-derived neurotrophic factor for axonal regeneration and motor function recovery in rats after transected spinal cord injury]. Chen X; Fan Y; Xiao Z; Li X; Yang B; Zhao Y; Hou X; Han S; Dai J Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2018 Jun; 32(6):650-659. PubMed ID: 29905040 [TBL] [Abstract][Full Text] [Related]
11. Significant Improvement of Acute Complete Spinal Cord Injury Patients Diagnosed by a Combined Criteria Implanted with NeuroRegen Scaffolds and Mesenchymal Stem Cells. Xiao Z; Tang F; Zhao Y; Han G; Yin N; Li X; Chen B; Han S; Jiang X; Yun C; Zhao C; Cheng S; Zhang S; Dai J Cell Transplant; 2018 Jun; 27(6):907-915. PubMed ID: 29871514 [TBL] [Abstract][Full Text] [Related]
12. Collagen scaffold combined with human umbilical cord-derived mesenchymal stem cells promote functional recovery after scar resection in rats with chronic spinal cord injury. Wang N; Xiao Z; Zhao Y; Wang B; Li X; Li J; Dai J J Tissue Eng Regen Med; 2018 Feb; 12(2):e1154-e1163. PubMed ID: 28482124 [TBL] [Abstract][Full Text] [Related]
13. Acellular spinal cord scaffold seeded with mesenchymal stem cells promotes long-distance axon regeneration and functional recovery in spinal cord injured rats. Liu J; Chen J; Liu B; Yang C; Xie D; Zheng X; Xu S; Chen T; Wang L; Zhang Z; Bai X; Jin D J Neurol Sci; 2013 Feb; 325(1-2):127-36. PubMed ID: 23317924 [TBL] [Abstract][Full Text] [Related]
14. [Effects of bone marrow mesenchymal stem cells with acellular muscle bioscaffolds on repair of acute hemi-transection spinal cord injury in rats]. Wei X; Wen Y; Zhang T; Li H Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2012 Nov; 26(11):1362-8. PubMed ID: 23230674 [TBL] [Abstract][Full Text] [Related]
15. The corticospinal tract structure of collagen/silk fibroin scaffold implants using 3D printing promotes functional recovery after complete spinal cord transection in rats. Li XH; Zhu X; Liu XY; Xu HH; Jiang W; Wang JJ; Chen F; Zhang S; Li RX; Chen XY; Tu Y J Mater Sci Mater Med; 2021 Mar; 32(4):31. PubMed ID: 33751254 [TBL] [Abstract][Full Text] [Related]
16. Co-Transplantation of Human Umbilical Cord Mesenchymal Stem Cells and Human Neural Stem Cells Improves the Outcome in Rats with Spinal Cord Injury. Sun L; Wang F; Chen H; Liu D; Qu T; Li X; Xu D; Liu F; Yin Z; Chen Y Cell Transplant; 2019 Jul; 28(7):893-906. PubMed ID: 31012325 [TBL] [Abstract][Full Text] [Related]
17. Research on Polycaprolactone-Gelatin Composite Scaffolds Carrying Nerve Growth Factor for the Repair of Spinal Cord Injury. Yang S; Zhang N; Dong Y; Zhang X Dis Markers; 2022; 2022():3880687. PubMed ID: 36212178 [TBL] [Abstract][Full Text] [Related]
18. Functional recovery in acute traumatic spinal cord injury after transplantation of human umbilical cord mesenchymal stem cells. Hu SL; Luo HS; Li JT; Xia YZ; Li L; Zhang LJ; Meng H; Cui GY; Chen Z; Wu N; Lin JK; Zhu G; Feng H Crit Care Med; 2010 Nov; 38(11):2181-9. PubMed ID: 20711072 [TBL] [Abstract][Full Text] [Related]
19. Protective effect of brain-derived neurotrophic factor and neurotrophin-3 overexpression by adipose-derived stem cells combined with silk fibroin/chitosan scaffold in spinal cord injury. Ji WC; Li M; Jiang WT; Ma X; Li J Neurol Res; 2020 May; 42(5):361-371. PubMed ID: 32149594 [No Abstract] [Full Text] [Related]
20. Construction of engineering adipose-like tissue in vivo utilizing human insulin gene-modified umbilical cord mesenchymal stromal cells with silk fibroin 3D scaffolds. Li SL; Liu Y; Hui L J Tissue Eng Regen Med; 2015 Dec; 9(12):E267-75. PubMed ID: 23509085 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]