These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 34817050)

  • 1. Balance Recoverability and Control of Bipedal Walkers With Foot Slip.
    Mihalec M; Trkov M; Yi J
    J Biomech Eng; 2022 May; 144(5):. PubMed ID: 34817050
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Soft tissue vibration: a biologically-inspired mechanism for stabilizing bipedal locomotion.
    Masters SE; Challis JH
    Bioinspir Biomim; 2021 Jan; 16(2):. PubMed ID: 33352541
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterizing slip-like responses during gait using an entire support surface perturbation: Comparisons to previously established slip methods.
    Huntley AH; Rajachandrakumar R; Schinkel-Ivy A; Mansfield A
    Gait Posture; 2019 Mar; 69():130-135. PubMed ID: 30708096
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theoretical analysis of the state of balance in bipedal walking.
    Firmani F; Park EJ
    J Biomech Eng; 2013 Apr; 135(4):041003. PubMed ID: 24231898
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Approximate analytical solutions to the double-stance dynamics of the lossy spring-loaded inverted pendulum.
    Shahbazi M; Saranlı U; Babuška R; Lopes GA
    Bioinspir Biomim; 2016 Dec; 12(1):016003. PubMed ID: 27918291
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A bipedal compliant walking model generates periodic gait cycles with realistic swing dynamics.
    Lim H; Park S
    J Biomech; 2019 Jun; 91():79-84. PubMed ID: 31153624
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A simple running model with rolling contact and its role as a template for dynamic locomotion on a hexapod robot.
    Huang KJ; Huang CK; Lin PC
    Bioinspir Biomim; 2014 Oct; 9(4):046004. PubMed ID: 25291720
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinematics of lower limbs during walking are emulated by springy walking model with a compliantly connected, off-centered curvy foot.
    Lim H; Park S
    J Biomech; 2018 Apr; 71():119-126. PubMed ID: 29456169
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Robust Balance-Control Framework for the Terrain-Blind Bipedal Walking of a Humanoid Robot on Unknown and Uneven Terrain.
    Joe HM; Oh JH
    Sensors (Basel); 2019 Sep; 19(19):. PubMed ID: 31569700
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicted threshold against backward balance loss following a slip in gait.
    Yang F; Anderson FC; Pai YC
    J Biomech; 2008; 41(9):1823-31. PubMed ID: 18538329
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control of human gait stability through foot placement.
    Bruijn SM; van Dieën JH
    J R Soc Interface; 2018 Jun; 15(143):. PubMed ID: 29875279
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Compliant bipedal model with the center of pressure excursion associated with oscillatory behavior of the center of mass reproduces the human gait dynamics.
    Jung CK; Park S
    J Biomech; 2014 Jan; 47(1):223-9. PubMed ID: 24161797
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel wearable device to deliver unconstrained, unpredictable slip perturbations during gait.
    Rasmussen CM; Hunt NH
    J Neuroeng Rehabil; 2019 Oct; 16(1):118. PubMed ID: 31623680
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Forward dynamic simulation of Japanese macaque bipedal locomotion demonstrates better energetic economy in a virtualised plantigrade posture.
    Oku H; Ide N; Ogihara N
    Commun Biol; 2021 Mar; 4(1):308. PubMed ID: 33686215
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The functional importance of human foot muscles for bipedal locomotion.
    Farris DJ; Kelly LA; Cresswell AG; Lichtwark GA
    Proc Natl Acad Sci U S A; 2019 Jan; 116(5):1645-1650. PubMed ID: 30655349
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The human foot and heel-sole-toe walking strategy: a mechanism enabling an inverted pendular gait with low isometric muscle force?
    Usherwood JR; Channon AJ; Myatt JP; Rankin JW; Hubel TY
    J R Soc Interface; 2012 Oct; 9(75):2396-402. PubMed ID: 22572024
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The bipedal saddle space: modelling and validation.
    Tiseo C; Veluvolu KC; Ang WT
    Bioinspir Biomim; 2018 Nov; 14(1):015001. PubMed ID: 30387438
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent Advances in Bipedal Walking Robots: Review of Gait, Drive, Sensors and Control Systems.
    Mikolajczyk T; Mikołajewska E; Al-Shuka HFN; Malinowski T; Kłodowski A; Pimenov DY; Paczkowski T; Hu F; Giasin K; Mikołajewski D; Macko M
    Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746222
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Walking in circles: a modelling approach.
    Maus HM; Seyfarth A
    J R Soc Interface; 2014 Oct; 11(99):. PubMed ID: 25056215
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reactive balance responses to a trip and slip during gait in people with multiple sclerosis.
    Mohamed Suhaimy MSB; Lord SR; Hoang PD; Nieto A; Sturnieks DL; Okubo Y
    Clin Biomech (Bristol, Avon); 2021 Dec; 90():105511. PubMed ID: 34710843
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.