These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 34817151)

  • 1. Capillary-Induced Clustering of Thermoresponsive Micropillars.
    Choi JS; Lim S; Kim J; Chung SS; Moon SE; Im JP; Kim JH; Kang SM
    ACS Appl Mater Interfaces; 2021 Dec; 13(48):58201-58208. PubMed ID: 34817151
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stability of high-aspect-ratio micropillar arrays against adhesive and capillary forces.
    Chandra D; Yang S
    Acc Chem Res; 2010 Aug; 43(8):1080-91. PubMed ID: 20552977
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomimetic ultrathin whitening by capillary-force-induced random clustering of hydrogel micropillar arrays.
    Chandra D; Yang S; Soshinsky AA; Gambogi RJ
    ACS Appl Mater Interfaces; 2009 Aug; 1(8):1698-704. PubMed ID: 20355785
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Very High-Aspect-Ratio Polymeric Micropillars Made by Two-Photon Polymerization.
    Kamranikia K; Dominici S; Keller M; Kube N; Mougin K; Spangenberg A
    Micromachines (Basel); 2023 Aug; 14(8):. PubMed ID: 37630138
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Replica molding of high-aspect-ratio hydrogel pillar arrays and their stability in air and solvents.
    Chandra D; Taylor JA; Yang S
    Soft Matter; 2008 Apr; 4(5):979-984. PubMed ID: 32907130
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Capillary-force-induced clustering of micropillar arrays: is it caused by isolated capillary bridges or by the lateral capillary meniscus interaction force?
    Chandra D; Yang S
    Langmuir; 2009 Sep; 25(18):10430-4. PubMed ID: 19735125
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Geometry-dependent compressive responses in nanoimprinted submicron-structured shape memory polyurethane.
    Lee WL; Low HY; Ortiz C
    Soft Matter; 2017 May; 13(18):3314-3327. PubMed ID: 28418057
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication and visualization of capillary bridges in slit pore geometry.
    Broesch DJ; Frechette J
    J Vis Exp; 2014 Jan; (83):e51143. PubMed ID: 24457446
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Material versatility using replica molding for large-scale fabrication of high aspect-ratio, high density arrays of nano-pillars.
    Li Y; Ng HW; Gates BD; Menon C
    Nanotechnology; 2014 Jul; 25(28):285303. PubMed ID: 24971845
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Capillary Force Driven Self-Assembly of Anisotropic Hierarchical Structures Prepared by Femtosecond Laser 3D Printing and Their Applications in Crystallizing Microparticles.
    Lao Z; Hu Y; Zhang C; Yang L; Li J; Chu J; Wu D
    ACS Nano; 2015 Dec; 9(12):12060-9. PubMed ID: 26506428
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microdevice arrays of high aspect ratio poly(dimethylsiloxane) pillars for the investigation of multicellular tumour spheroid mechanical properties.
    Aoun L; Weiss P; Laborde A; Ducommun B; Lobjois V; Vieu C
    Lab Chip; 2014 Jul; 14(13):2344-53. PubMed ID: 24836927
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermoresponsive Semi-IPN Hydrogel Microfibers from Continuous Fluidic Processing with High Elasticity and Fast Actuation.
    Liu Y; Zhang K; Ma J; Vancso GJ
    ACS Appl Mater Interfaces; 2017 Jan; 9(1):901-908. PubMed ID: 28026935
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapidly responsive smart adhesive-coated micropillars utilizing catechol-boronate complexation chemistry.
    Narkar AR; Kendrick C; Bellur K; Leftwich T; Zhang Z; Lee BP
    Soft Matter; 2019 Jul; 15(27):5474-5482. PubMed ID: 31237299
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deflected capillary force lithography.
    Cai Y; Zhao Z; Chen J; Yang T; Cremer PS
    ACS Nano; 2012 Feb; 6(2):1548-56. PubMed ID: 22224366
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Slanted Functional Gradient Micropillars for Optimal Bioinspired Dry Adhesion.
    Wang Z
    ACS Nano; 2018 Feb; 12(2):1273-1284. PubMed ID: 29357229
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Survival of polymeric microstructures subjected to interrogatory touch.
    Finn M; Treiber J; Issa M; Martens CJ; Feeney CP; Ngwa L; Dhong C; Lipomi DJ
    PLoS One; 2021; 16(9):e0255980. PubMed ID: 34473714
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermoresponsive Polymer Micropatterns Fabricated by Dip-Pen Nanolithography for a Highly Controllable Substrate with Potential Cellular Applications.
    Laing S; Suriano R; Lamprou DA; Smith CA; Dalby MJ; Mabbott S; Faulds K; Graham D
    ACS Appl Mater Interfaces; 2016 Sep; 8(37):24844-52. PubMed ID: 27572916
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Directional Clustering of Slanted Nanopillars by Elastocapillarity.
    Kim SM; Kim J; Kang SM; Jang S; Kang D; Moon SE; Kim HN; Yoon H
    Small; 2016 Jul; 12(28):3764-9. PubMed ID: 27273859
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of dynamic contact angle in a volume of fluid (VOF) model for a microfluidic capillary flow.
    Ashish Saha A; Mitra SK
    J Colloid Interface Sci; 2009 Nov; 339(2):461-80. PubMed ID: 19732904
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Removal of Particulate Contamination from Solid Surfaces Using Polymeric Micropillars.
    Izadi H; Dogra N; Perreault F; Schwarz C; Simon S; Vanderlick TK
    ACS Appl Mater Interfaces; 2016 Jul; 8(26):16967-78. PubMed ID: 27101206
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.