These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
455 related articles for article (PubMed ID: 34817488)
81. Carbon supported noble metal nanoparticles as efficient catalysts for electrochemical water splitting. Liu M; Hof F; Moro M; Valenti G; Paolucci F; Pénicaud A Nanoscale; 2020 Oct; 12(39):20165-20170. PubMed ID: 33001129 [TBL] [Abstract][Full Text] [Related]
82. Critical Role of Phosphorus in Hollow Structures Cobalt-Based Phosphides as Bifunctional Catalysts for Water Splitting. Zhang W; Han N; Luo J; Han X; Feng S; Guo W; Xie S; Zhou Z; Subramanian P; Wan K; Arbiol J; Zhang C; Liu S; Xu M; Zhang X; Fransaer J Small; 2022 Jan; 18(4):e2103561. PubMed ID: 34761518 [TBL] [Abstract][Full Text] [Related]
84. Synthesis of an Ultrafine CoP Nanocrystal/Graphene Sandwiched Structure for Efficient Overall Water Splitting. Li L; Wang X; Guo Y; Li J Langmuir; 2020 Mar; 36(8):1916-1922. PubMed ID: 32036665 [TBL] [Abstract][Full Text] [Related]
85. Integrating natural biomass electro-oxidation and hydrogen evolution: using a porous Fe-doped CoP nanosheet array as a bifunctional catalyst. Hao S; Yang L; Liu D; Kong R; Du G; Asiri AM; Yang Y; Sun X Chem Commun (Camb); 2017 May; 53(42):5710-5713. PubMed ID: 28487917 [TBL] [Abstract][Full Text] [Related]
86. An efficient bifunctional electrocatalyst for water splitting based on cobalt phosphide. Yang L; Qi H; Zhang C; Sun X Nanotechnology; 2016 Jun; 27(23):23LT01. PubMed ID: 27146428 [TBL] [Abstract][Full Text] [Related]
87. Dealloying-directed synthesis of efficient mesoporous CoFe-based catalysts towards the oxygen evolution reaction and overall water splitting. Han L; Dong C; Zhang C; Gao Y; Zhang J; Gao H; Wang Y; Zhang Z Nanoscale; 2017 Nov; 9(42):16467-16475. PubMed ID: 29063927 [TBL] [Abstract][Full Text] [Related]
88. Carbon nanotubes decorated with CoP nanocrystals: a highly active non-noble-metal nanohybrid electrocatalyst for hydrogen evolution. Liu Q; Tian J; Cui W; Jiang P; Cheng N; Asiri AM; Sun X Angew Chem Int Ed Engl; 2014 Jun; 53(26):6710-4. PubMed ID: 24845625 [TBL] [Abstract][Full Text] [Related]
90. Construction of Fe-doped CoP with hybrid nanostructures as a bifunctional catalyst for overall water splitting. Yang Q; Dai H; Liao W; Tong X; Fu Y; Qian M; Chen T Dalton Trans; 2021 Dec; 50(48):18069-18076. PubMed ID: 34846399 [TBL] [Abstract][Full Text] [Related]
91. Electrochemical Synergies of Heterostructured Fe Kim J; Heo JN; Do JY; Chava RK; Kang M Nanomaterials (Basel); 2019 Oct; 9(10):. PubMed ID: 31635334 [TBL] [Abstract][Full Text] [Related]
92. Tiny Ni Nanoparticles Embedded in Boron- and Nitrogen-Codoped Porous Carbon Nanowires for High-Efficiency Water Splitting. Guo F; Liu Z; Zhang Y; Xiao J; Zeng X; Zhang C; Dong P; Liu T; Zhang Y; Li M ACS Appl Mater Interfaces; 2022 Jun; 14(21):24447-24461. PubMed ID: 35604016 [TBL] [Abstract][Full Text] [Related]
95. Superior Electrochemical Water Splitting and Energy-Storage Performances of In Situ Fabricated Charge-Separated Metal Organophosphonate Single Crystals. Rom T; Agrawal A; Biswas R; Haldar KK; Paul AK ACS Appl Mater Interfaces; 2024 Apr; 16(14):17797-17811. PubMed ID: 38552198 [TBL] [Abstract][Full Text] [Related]
96. Co Zhang G; Yang J; Wang H; Chen H; Yang J; Pan F ACS Appl Mater Interfaces; 2017 May; 9(19):16159-16167. PubMed ID: 28447457 [TBL] [Abstract][Full Text] [Related]
97. Bifunctional NiFe layered double hydroxide@Ni Liang X; Li Y; Fan H; Deng S; Zhao X; Chen M; Pan G; Xiong Q; Xia X Nanotechnology; 2019 Nov; 30(48):484001. PubMed ID: 31430739 [TBL] [Abstract][Full Text] [Related]
98. Ir/g-C Jiang B; Wang T; Cheng Y; Liao F; Wu K; Shao M ACS Appl Mater Interfaces; 2018 Nov; 10(45):39161-39167. PubMed ID: 30338972 [TBL] [Abstract][Full Text] [Related]
100. Heterostructured Mo and Co-based phosphides as high-performance bifunctional electrocatalysts for overall water splitting. Yang H; Yang M; Hu T; Guo L; Meng R; Shi Y; Xu Y Phys Chem Chem Phys; 2023 Jul; 25(26):17186-17196. PubMed ID: 37345914 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]