These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 34818029)

  • 1. Generation of high-density nanoparticles in the carbothermal shock method.
    Song JY; Kim C; Kim M; Cho KM; Gereige I; Jung WB; Jeong H; Jung HT
    Sci Adv; 2021 Nov; 7(48):eabk2984. PubMed ID: 34818029
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbothermal shock synthesis of high-entropy-alloy nanoparticles.
    Yao Y; Huang Z; Xie P; Lacey SD; Jacob RJ; Xie H; Chen F; Nie A; Pu T; Rehwoldt M; Yu D; Zachariah MR; Wang C; Shahbazian-Yassar R; Li J; Hu L
    Science; 2018 Mar; 359(6383):1489-1494. PubMed ID: 29599236
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Atomic-Scale Homogeneous RuCu Alloy Nanoparticles for Highly Efficient Electrocatalytic Nitrogen Reduction.
    Kim C; Song JY; Choi C; Ha JP; Lee W; Nam YT; Lee DM; Kim G; Gereige I; Jung WB; Lee H; Jung Y; Jeong H; Jung HT
    Adv Mater; 2022 Oct; 34(40):e2205270. PubMed ID: 35901115
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of CuAg/Cu
    Nazir R; Kumar A; Ali Saleh Saad M; Ali S
    J Colloid Interface Sci; 2020 Oct; 578():726-737. PubMed ID: 32574908
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-efficiency application of CTS-Co NPs mimicking peroxidase enzyme on TMB(ox).
    Altuner EE; Ozalp VC; Yilmaz MD; Bekmezci M; Sen F
    Chemosphere; 2022 Apr; 292():133429. PubMed ID: 34973252
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrochemical Reduction of CO
    Zhang S; Zhao S; Qu D; Liu X; Wu Y; Chen Y; Huang W
    Small; 2021 Sep; 17(37):e2102293. PubMed ID: 34342137
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strong electrostatic adsorption-engaged fabrication of sub-3.0 nm PtRu alloy nanoparticles as synergistic electrocatalysts toward hydrogen evolution.
    Yang Z; Yang D; Wang Y; Long Y; Huang W; Fan G
    Nanoscale; 2021 Jun; 13(22):10044-10050. PubMed ID: 34038495
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relating the composition of Pt(x)Ru(100-x)/C nanoparticles to their structural aspects and electrocatalytic activities in the methanol oxidation reaction.
    Taufany F; Pan CJ; Lai FJ; Chou HL; Sarma LS; Rick J; Lin JM; Lee JF; Tang MT; Hwang BJ
    Chemistry; 2013 Jan; 19(3):905-15. PubMed ID: 23197430
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monitoring of Anthracene Using Nanoscale Au-Cu Bimetallic Alloy Nanoparticles Synthesized with Various Compositions.
    Latif-Ur-Rahman ; Shah A; Han C; Jan AK
    ACS Omega; 2020 Sep; 5(35):22494-22501. PubMed ID: 32923808
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RuCu Cage/Alloy Nanoparticles with Controllable Electroactivity for Specific Electroanalysis Applications.
    Zheng W; Yao J; Zhao Y
    Anal Chem; 2021 Sep; 93(38):13080-13088. PubMed ID: 34523913
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sacrificial Catalyst of Carbothermal-Shock-Synthesized 1T-MoS
    Son M; Park J; Im E; Ryu JH; Durmus YE; Eichel RA; Kang SJ
    Nano Lett; 2023 Jan; 23(1):344-352. PubMed ID: 36574277
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Facile and General Method to Synthesize Pt-Based High-Entropy-Alloy Nanoparticles.
    Zhao P; Cao Q; Yi W; Hao X; Li J; Zhang B; Huang L; Huang Y; Jiang Y; Xu B; Shan Z; Chen J
    ACS Nano; 2022 Sep; 16(9):14017-14028. PubMed ID: 35998311
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cu
    Gao Y; Wu Q; Liang X; Wang Z; Zheng Z; Wang P; Liu Y; Dai Y; Whangbo MH; Huang B
    Adv Sci (Weinh); 2020 Mar; 7(6):1902820. PubMed ID: 32195095
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Boosting the electrocatalytic activity of Pd/C by Cu alloying: Insight on Pd/Cu composition and reaction pathway.
    Goswami C; Saikia H; Jyoti Borah B; Jyoti Kalita M; Tada K; Tanaka S; Bharali P
    J Colloid Interface Sci; 2021 Apr; 587():446-456. PubMed ID: 33383434
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Elemental Core Level Shift in High Entropy Alloy Nanoparticles
    Xu X; Guo Y; Bloom BP; Wei J; Li H; Li H; Du Y; Zeng Z; Li L; Waldeck DH
    ACS Nano; 2020 Dec; 14(12):17704-17712. PubMed ID: 33284574
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Roughness Effect of Cu on Electrocatalytic CO
    Jiang Y; Zhong D; Wang L; Li J; Hao G; Li J; Zhao Q
    Chem Asian J; 2022 Jul; 17(14):e202200380. PubMed ID: 35535732
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mobile iron nanoparticle and its role in the formation of SiO2 nanotrench via carbon nanotube-guided carbothermal reduction.
    Byon HR; Choi HC
    Nano Lett; 2008 Jan; 8(1):178-82. PubMed ID: 18095732
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Size-dependent electrocatalytic reduction of CO2 over Pd nanoparticles.
    Gao D; Zhou H; Wang J; Miao S; Yang F; Wang G; Wang J; Bao X
    J Am Chem Soc; 2015 Apr; 137(13):4288-91. PubMed ID: 25746233
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synergistic effect of Pt-Ni dual single-atoms and alloy nanoparticles as a high-efficiency electrocatalyst to minimize Pt utilization at cathode in polymer electrolyte membrane fuel cells.
    Duc Le T; Ahemad MJ; Kim DS; Lee BH; Oh GJ; Shin GS; Nagappagari LR; Dao V; Van Tran T; Yu YT
    J Colloid Interface Sci; 2023 Mar; 634():930-939. PubMed ID: 36566637
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly branched gold-copper nanostructures for non-enzymatic specific detection of glucose and hydrogen peroxide.
    Ngamaroonchote A; Sanguansap Y; Wutikhun T; Karn-Orachai K
    Mikrochim Acta; 2020 Sep; 187(10):559. PubMed ID: 32915302
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.