BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 34818430)

  • 1. Implementing in vitro bioactivity data to modernize priority setting of chemical inventories.
    Beal MA; Gagne M; Kulkarni SA; Patlewicz G; Thomas RS; Barton-Maclaren TS
    ALTEX; 2022; 39(1):123-139. PubMed ID: 34818430
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Incorporating High-Throughput Exposure Predictions With Dosimetry-Adjusted In Vitro Bioactivity to Inform Chemical Toxicity Testing.
    Wetmore BA; Wambaugh JF; Allen B; Ferguson SS; Sochaski MA; Setzer RW; Houck KA; Strope CL; Cantwell K; Judson RS; LeCluyse E; Clewell HJ; Thomas RS; Andersen ME
    Toxicol Sci; 2015 Nov; 148(1):121-36. PubMed ID: 26251325
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessing Toxicokinetic Uncertainty and Variability in Risk Prioritization.
    Wambaugh JF; Wetmore BA; Ring CL; Nicolas CI; Pearce RG; Honda GS; Dinallo R; Angus D; Gilbert J; Sierra T; Badrinarayanan A; Snodgrass B; Brockman A; Strock C; Setzer RW; Thomas RS
    Toxicol Sci; 2019 Dec; 172(2):235-251. PubMed ID: 31532498
    [TBL] [Abstract][Full Text] [Related]  

  • 4. httk: R Package for High-Throughput Toxicokinetics.
    Pearce RG; Setzer RW; Strope CL; Wambaugh JF; Sipes NS
    J Stat Softw; 2017 Jul; 79(4):1-26. PubMed ID: 30220889
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-throughput PBTK models for
    Breen M; Ring CL; Kreutz A; Goldsmith MR; Wambaugh JF
    Expert Opin Drug Metab Toxicol; 2021 Aug; 17(8):903-921. PubMed ID: 34056988
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-throughput screening tools facilitate calculation of a combined exposure-bioactivity index for chemicals with endocrine activity.
    Wegner SH; Pinto CL; Ring CL; Wambaugh JF
    Environ Int; 2020 Apr; 137():105470. PubMed ID: 32050122
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predictive modeling of biological responses in the rat liver using
    Ring C; Sipes NS; Hsieh JH; Carberry C; Koval LE; Klaren WD; Harris MA; Auerbach SS; Rager JE
    Comput Toxicol; 2021 May; 18():. PubMed ID: 34013136
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of computational toxicology tools to predict
    Silva M; Kwok RK
    Curr Res Toxicol; 2022; 3():100064. PubMed ID: 35243363
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Utility of In Vitro Bioactivity as a Lower Bound Estimate of In Vivo Adverse Effect Levels and in Risk-Based Prioritization.
    Paul Friedman K; Gagne M; Loo LH; Karamertzanis P; Netzeva T; Sobanski T; Franzosa JA; Richard AM; Lougee RR; Gissi A; Lee JJ; Angrish M; Dorne JL; Foster S; Raffaele K; Bahadori T; Gwinn MR; Lambert J; Whelan M; Rasenberg M; Barton-Maclaren T; Thomas RS
    Toxicol Sci; 2020 Jan; 173(1):202-225. PubMed ID: 31532525
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of computational toxicology models to predict toxicological points of departure: A case study with triazine herbicides.
    Silva M; Kwok RK
    Birth Defects Res; 2023 Mar; 115(5):525-544. PubMed ID: 36584090
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exposure forecasting - ExpoCast - for data-poor chemicals in commerce and the environment.
    Wambaugh JF; Rager JE
    J Expo Sci Environ Epidemiol; 2022 Nov; 32(6):783-793. PubMed ID: 36347934
    [TBL] [Abstract][Full Text] [Related]  

  • 12. From vision toward best practices: Evaluating
    Reardon AJF; Farmahin R; Williams A; Meier MJ; Addicks GC; Yauk CL; Matteo G; Atlas E; Harrill J; Everett LJ; Shah I; Judson R; Ramaiahgari S; Ferguson SS; Barton-Maclaren TS
    Front Toxicol; 2023; 5():1194895. PubMed ID: 37288009
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identifying populations sensitive to environmental chemicals by simulating toxicokinetic variability.
    Ring CL; Pearce RG; Setzer RW; Wetmore BA; Wambaugh JF
    Environ Int; 2017 Sep; 106():105-118. PubMed ID: 28628784
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of in silico, in vitro, and in vivo toxicity benchmarks suggests a role for ToxCast data in ecological hazard assessment.
    Schaupp CM; Maloney EM; Mattingly KZ; Olker JH; Villeneuve DL
    Toxicol Sci; 2023 Sep; 195(2):145-154. PubMed ID: 37490521
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The chemical landscape of high-throughput new approach methodologies for exposure.
    Isaacs KK; Egeghy P; Dionisio KL; Phillips KA; Zidek A; Ring C; Sobus JR; Ulrich EM; Wetmore BA; Williams AJ; Wambaugh JF
    J Expo Sci Environ Epidemiol; 2022 Nov; 32(6):820-832. PubMed ID: 36435938
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Toxicokinetic Triage for Environmental Chemicals.
    Wambaugh JF; Wetmore BA; Pearce R; Strope C; Goldsmith R; Sluka JP; Sedykh A; Tropsha A; Bosgra S; Shah I; Judson R; Thomas RS; Setzer RW
    Toxicol Sci; 2015 Sep; 147(1):55-67. PubMed ID: 26085347
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational toxicology as implemented by the U.S. EPA: providing high throughput decision support tools for screening and assessing chemical exposure, hazard and risk.
    Kavlock R; Dix D
    J Toxicol Environ Health B Crit Rev; 2010 Feb; 13(2-4):197-217. PubMed ID: 20574897
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of ToxCast/Tox21 data for toxicity mechanism-based evaluation and prioritization of environmental chemicals: Perspective and limitations.
    Jeong J; Kim D; Choi J
    Toxicol In Vitro; 2022 Oct; 84():105451. PubMed ID: 35921976
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Infer the in vivo point of departure with ToxCast in vitro assay data using a robust learning approach.
    Wang D
    Arch Toxicol; 2018 Sep; 92(9):2913-2922. PubMed ID: 29995190
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of food-relevant chemicals in the ToxCast high-throughput screening program.
    Karmaus AL; Filer DL; Martin MT; Houck KA
    Food Chem Toxicol; 2016 Jun; 92():188-96. PubMed ID: 27103583
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.