These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
252 related articles for article (PubMed ID: 34818430)
1. Implementing in vitro bioactivity data to modernize priority setting of chemical inventories. Beal MA; Gagne M; Kulkarni SA; Patlewicz G; Thomas RS; Barton-Maclaren TS ALTEX; 2022; 39(1):123-139. PubMed ID: 34818430 [TBL] [Abstract][Full Text] [Related]
2. High-throughput PBTK models for Breen M; Ring CL; Kreutz A; Goldsmith MR; Wambaugh JF Expert Opin Drug Metab Toxicol; 2021 Aug; 17(8):903-921. PubMed ID: 34056988 [TBL] [Abstract][Full Text] [Related]
3. Incorporating High-Throughput Exposure Predictions With Dosimetry-Adjusted In Vitro Bioactivity to Inform Chemical Toxicity Testing. Wetmore BA; Wambaugh JF; Allen B; Ferguson SS; Sochaski MA; Setzer RW; Houck KA; Strope CL; Cantwell K; Judson RS; LeCluyse E; Clewell HJ; Thomas RS; Andersen ME Toxicol Sci; 2015 Nov; 148(1):121-36. PubMed ID: 26251325 [TBL] [Abstract][Full Text] [Related]
4. Assessing Toxicokinetic Uncertainty and Variability in Risk Prioritization. Wambaugh JF; Wetmore BA; Ring CL; Nicolas CI; Pearce RG; Honda GS; Dinallo R; Angus D; Gilbert J; Sierra T; Badrinarayanan A; Snodgrass B; Brockman A; Strock C; Setzer RW; Thomas RS Toxicol Sci; 2019 Dec; 172(2):235-251. PubMed ID: 31532498 [TBL] [Abstract][Full Text] [Related]
5. httk: R Package for High-Throughput Toxicokinetics. Pearce RG; Setzer RW; Strope CL; Wambaugh JF; Sipes NS J Stat Softw; 2017 Jul; 79(4):1-26. PubMed ID: 30220889 [TBL] [Abstract][Full Text] [Related]
6. High-throughput screening tools facilitate calculation of a combined exposure-bioactivity index for chemicals with endocrine activity. Wegner SH; Pinto CL; Ring CL; Wambaugh JF Environ Int; 2020 Apr; 137():105470. PubMed ID: 32050122 [TBL] [Abstract][Full Text] [Related]
7. Comparison of in silico, in vitro, and in vivo toxicity benchmarks suggests a role for ToxCast data in ecological hazard assessment. Schaupp CM; Maloney EM; Mattingly KZ; Olker JH; Villeneuve DL Toxicol Sci; 2023 Sep; 195(2):145-154. PubMed ID: 37490521 [TBL] [Abstract][Full Text] [Related]
8. Predictive modeling of biological responses in the rat liver using Ring C; Sipes NS; Hsieh JH; Carberry C; Koval LE; Klaren WD; Harris MA; Auerbach SS; Rager JE Comput Toxicol; 2021 May; 18():. PubMed ID: 34013136 [TBL] [Abstract][Full Text] [Related]
9. Use of computational toxicology tools to predict Silva M; Kwok RK Curr Res Toxicol; 2022; 3():100064. PubMed ID: 35243363 [TBL] [Abstract][Full Text] [Related]
10. Utility of In Vitro Bioactivity as a Lower Bound Estimate of In Vivo Adverse Effect Levels and in Risk-Based Prioritization. Paul Friedman K; Gagne M; Loo LH; Karamertzanis P; Netzeva T; Sobanski T; Franzosa JA; Richard AM; Lougee RR; Gissi A; Lee JJ; Angrish M; Dorne JL; Foster S; Raffaele K; Bahadori T; Gwinn MR; Lambert J; Whelan M; Rasenberg M; Barton-Maclaren T; Thomas RS Toxicol Sci; 2020 Jan; 173(1):202-225. PubMed ID: 31532525 [TBL] [Abstract][Full Text] [Related]
11. Use of computational toxicology models to predict toxicological points of departure: A case study with triazine herbicides. Silva M; Kwok RK Birth Defects Res; 2023 Mar; 115(5):525-544. PubMed ID: 36584090 [TBL] [Abstract][Full Text] [Related]
12. From vision toward best practices: Evaluating Reardon AJF; Farmahin R; Williams A; Meier MJ; Addicks GC; Yauk CL; Matteo G; Atlas E; Harrill J; Everett LJ; Shah I; Judson R; Ramaiahgari S; Ferguson SS; Barton-Maclaren TS Front Toxicol; 2023; 5():1194895. PubMed ID: 37288009 [TBL] [Abstract][Full Text] [Related]
13. Exposure forecasting - ExpoCast - for data-poor chemicals in commerce and the environment. Wambaugh JF; Rager JE J Expo Sci Environ Epidemiol; 2022 Nov; 32(6):783-793. PubMed ID: 36347934 [TBL] [Abstract][Full Text] [Related]
14. Identifying populations sensitive to environmental chemicals by simulating toxicokinetic variability. Ring CL; Pearce RG; Setzer RW; Wetmore BA; Wambaugh JF Environ Int; 2017 Sep; 106():105-118. PubMed ID: 28628784 [TBL] [Abstract][Full Text] [Related]
15. The chemical landscape of high-throughput new approach methodologies for exposure. Isaacs KK; Egeghy P; Dionisio KL; Phillips KA; Zidek A; Ring C; Sobus JR; Ulrich EM; Wetmore BA; Williams AJ; Wambaugh JF J Expo Sci Environ Epidemiol; 2022 Nov; 32(6):820-832. PubMed ID: 36435938 [TBL] [Abstract][Full Text] [Related]
17. Computational toxicology as implemented by the U.S. EPA: providing high throughput decision support tools for screening and assessing chemical exposure, hazard and risk. Kavlock R; Dix D J Toxicol Environ Health B Crit Rev; 2010 Feb; 13(2-4):197-217. PubMed ID: 20574897 [TBL] [Abstract][Full Text] [Related]
18. Application of ToxCast/Tox21 data for toxicity mechanism-based evaluation and prioritization of environmental chemicals: Perspective and limitations. Jeong J; Kim D; Choi J Toxicol In Vitro; 2022 Oct; 84():105451. PubMed ID: 35921976 [TBL] [Abstract][Full Text] [Related]
19. Infer the in vivo point of departure with ToxCast in vitro assay data using a robust learning approach. Wang D Arch Toxicol; 2018 Sep; 92(9):2913-2922. PubMed ID: 29995190 [TBL] [Abstract][Full Text] [Related]
20. Comprehensive interpretation of in vitro micronucleus test results for 292 chemicals: from hazard identification to risk assessment application. Kuo B; Beal MA; Wills JW; White PA; Marchetti F; Nong A; Barton-Maclaren TS; Houck K; Yauk CL Arch Toxicol; 2022 Jul; 96(7):2067-2085. PubMed ID: 35445829 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]