These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 34818531)

  • 21. Antero-posterior ectoderm patterning by canonical Wnt signaling during ascidian development.
    Feinberg S; Roure A; Piron J; Darras S
    PLoS Genet; 2019 Mar; 15(3):e1008054. PubMed ID: 30925162
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Switch-like behavior enables Wnt11 concentration specific response during dorso-ventral axis formation in Xenopus laevis.
    Sträng JE; Schuler R; Kühl M; Kestler HA
    J Theor Biol; 2017 Sep; 429():82-94. PubMed ID: 28648560
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The Wnt/calcium pathway activates NF-AT and promotes ventral cell fate in Xenopus embryos.
    Saneyoshi T; Kume S; Amasaki Y; Mikoshiba K
    Nature; 2002 May; 417(6886):295-9. PubMed ID: 12015605
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A secreted splice variant of the Xenopus frizzled-4 receptor is a biphasic modulator of Wnt signalling.
    Gorny AK; Kaufmann LT; Swain RK; Steinbeisser H
    Cell Commun Signal; 2013 Nov; 11():89. PubMed ID: 24252524
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Short-range Wnt5 signaling initiates specification of sea urchin posterior ectoderm.
    McIntyre DC; Seay NW; Croce JC; McClay DR
    Development; 2013 Dec; 140(24):4881-9. PubMed ID: 24227654
    [TBL] [Abstract][Full Text] [Related]  

  • 26. G protein-coupled receptors Flop1 and Flop2 inhibit Wnt/β-catenin signaling and are essential for head formation in Xenopus.
    Miyagi A; Negishi T; Yamamoto TS; Ueno N
    Dev Biol; 2015 Nov; 407(1):131-44. PubMed ID: 26244992
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The forkhead transcription factor FoxB1 regulates the dorsal-ventral and anterior-posterior patterning of the ectoderm during early Xenopus embryogenesis.
    Takebayashi-Suzuki K; Kitayama A; Terasaka-Iioka C; Ueno N; Suzuki A
    Dev Biol; 2011 Dec; 360(1):11-29. PubMed ID: 21958745
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The evolution of nervous system patterning: insights from sea urchin development.
    Angerer LM; Yaguchi S; Angerer RC; Burke RD
    Development; 2011 Sep; 138(17):3613-23. PubMed ID: 21828090
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Direct regulation of siamois by VegT is required for axis formation in Xenopus embryo.
    Li HY; El Yakoubi W; Shi DL
    Int J Dev Biol; 2015; 59(10-12):443-51. PubMed ID: 26009239
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Antagonist activity of DWnt-4 and wingless in the Drosophila embryonic ventral ectoderm and in heterologous Xenopus assays.
    Gieseler K; Graba Y; Mariol MC; Wilder EL; Martinez-Arias A; Lemaire P; Pradel J
    Mech Dev; 1999 Jul; 85(1-2):123-31. PubMed ID: 10415353
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Maternal control of pattern formation in Xenopus laevis.
    White JA; Heasman J
    J Exp Zool B Mol Dev Evol; 2008 Jan; 310(1):73-84. PubMed ID: 17219372
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An atlas of Wnt activity during embryogenesis in Xenopus tropicalis.
    Borday C; Parain K; Thi Tran H; Vleminckx K; Perron M; Monsoro-Burq AH
    PLoS One; 2018; 13(4):e0193606. PubMed ID: 29672592
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Axis determination by inhibition of Wnt signaling in Xenopus.
    Itoh K; Sokol SY
    Genes Dev; 1999 Sep; 13(17):2328-36. PubMed ID: 10485853
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Distinct PAR-1 proteins function in different branches of Wnt signaling during vertebrate development.
    Ossipova O; Dhawan S; Sokol S; Green JB
    Dev Cell; 2005 Jun; 8(6):829-41. PubMed ID: 15935773
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Integration of canonical and noncanonical Wnt signaling pathways patterns the neuroectoderm along the anterior-posterior axis of sea urchin embryos.
    Range RC; Angerer RC; Angerer LM
    PLoS Biol; 2013; 11(1):e1001467. PubMed ID: 23335859
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cholesterol-rich membrane microdomains modulate Wnt/β-catenin morphogen gradient during Xenopus development.
    Reis AH; Moreno MM; Maia LA; Oliveira FP; Santos AS; Abreu JG
    Mech Dev; 2016 Nov; 142():30-39. PubMed ID: 27687541
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Patterning mechanisms in the evolution of derived developmental life histories: the role of Wnt signaling in axis formation of the direct-developing sea urchin Heliocidaris erythrogramma.
    Kauffman JS; Raff RA
    Dev Genes Evol; 2003 Dec; 213(12):612-24. PubMed ID: 14618401
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Wnt5a and Wnt11 interact in a maternal Dkk1-regulated fashion to activate both canonical and non-canonical signaling in Xenopus axis formation.
    Cha SW; Tadjuidje E; Tao Q; Wylie C; Heasman J
    Development; 2008 Nov; 135(22):3719-29. PubMed ID: 18927149
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The RNF146 E3 ubiquitin ligase is required for the control of Wnt signaling and body pattern formation in Xenopus.
    Zhu X; Xing R; Tan R; Dai R; Tao Q
    Mech Dev; 2017 Oct; 147():28-36. PubMed ID: 28807725
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The emergence of pattern in embryogenesis: regulation of beta-catenin localization during early sea urchin development.
    Ettensohn CA
    Sci STKE; 2006 Nov; 2006(361):pe48. PubMed ID: 17106077
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.