These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 34818582)

  • 1. Controllability and state feedback control of a cardiac ionic cell model.
    Vogt R; Guzman A; Charron C; Muñoz L
    Comput Biol Med; 2021 Dec; 139():104909. PubMed ID: 34818582
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controllability of voltage- and calcium-driven cardiac alternans in a map model.
    Muñoz LM; Ampofo MO; Cherry EM
    Chaos; 2021 Feb; 31(2):023139. PubMed ID: 33653066
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Observability analysis and state observer design for a cardiac ionic cell model.
    Guzman A; Vogt R; Charron C; Pusarla K; Muñoz L
    Comput Biol Med; 2020 Oct; 125():103910. PubMed ID: 33035962
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controlling alternans in cardiac cells.
    Li M; Otani NF
    Ann Biomed Eng; 2004 Jun; 32(6):784-92. PubMed ID: 15255209
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stochastic pacing reveals the propensity to cardiac action potential alternans and uncovers its underlying dynamics.
    Prudat Y; Madhvani RV; Angelini M; Borgstom NP; Garfinkel A; Karagueuzian HS; Weiss JN; de Lange E; Olcese R; Kucera JP
    J Physiol; 2016 May; 594(9):2537-53. PubMed ID: 26563830
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alternans and the influence of ionic channel modifications: Cardiac three-dimensional simulations and one-dimensional numerical bifurcation analysis.
    Bauer S; Röder G; Bär M
    Chaos; 2007 Mar; 17(1):015104. PubMed ID: 17411261
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatiotemporal intracellular calcium dynamics during cardiac alternans.
    Restrepo JG; Karma A
    Chaos; 2009 Sep; 19(3):037115. PubMed ID: 19792040
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cardiac alternans annihilation by distributed mechano-electric feedback (MEF).
    Deshpande D; Belhamadia Y; Dubljevic S
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():259-62. PubMed ID: 22254299
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The mechanisms of calcium cycling and action potential dynamics in cardiac alternans.
    Kanaporis G; Blatter LA
    Circ Res; 2015 Feb; 116(5):846-56. PubMed ID: 25532796
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Applications of control theory to the dynamics and propagation of cardiac action potentials.
    Muñoz LM; Stockton JF; Otani NF
    Ann Biomed Eng; 2010 Sep; 38(9):2865-76. PubMed ID: 20407833
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control of action potential duration alternans in canine ventricular tissue.
    Kanu U; Iravanian S; Gilmour RF; Christini DJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():1997-2000. PubMed ID: 21097010
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adaptive diastolic interval control of cardiac action potential duration alternans.
    Jordan PN; Christini DJ
    J Cardiovasc Electrophysiol; 2004 Oct; 15(10):1177-85. PubMed ID: 15485444
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Control of cardiac alternans by mechanical and electrical feedback.
    Yapari F; Deshpande D; Belhamadia Y; Dubljevic S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):012706. PubMed ID: 25122334
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alternans resonance and propagation block during supernormal conduction in cardiac tissue with decreased [K(+)](o).
    de Lange E; Kucera JP
    Biophys J; 2010 Apr; 98(7):1129-38. PubMed ID: 20371312
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calcium-activated chloride current determines action potential morphology during calcium alternans in atrial myocytes.
    Kanaporis G; Blatter LA
    J Physiol; 2016 Feb; 594(3):699-714. PubMed ID: 26662365
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamical mechanism for subcellular alternans in cardiac myocytes.
    Gaeta SA; Bub G; Abbott GW; Christini DJ
    Circ Res; 2009 Aug; 105(4):335-42. PubMed ID: 19628792
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alternans promotion in cardiac electrophysiology models by delay differential equations.
    Gomes JM; Dos Santos RW; Cherry EM
    Chaos; 2017 Sep; 27(9):093915. PubMed ID: 28964124
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A computational model of pig ventricular cardiomyocyte electrophysiology and calcium handling: Translation from pig to human electrophysiology.
    Gaur N; Qi XY; Benoist D; Bernus O; Coronel R; Nattel S; Vigmond EJ
    PLoS Comput Biol; 2021 Jun; 17(6):e1009137. PubMed ID: 34191797
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Studies on Feedback Control of Cardiac Alternans.
    Dubljevic S; Lin SF; Christofides P
    Comput Chem Eng; 2008 Sep; 32(9):2086-2098. PubMed ID: 21423841
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Premature beats elicit a phase reversal of mechanoelectrical alternans in cat ventricular myocytes. A possible mechanism for reentrant arrhythmias.
    Rubenstein DS; Lipsius SL
    Circulation; 1995 Jan; 91(1):201-14. PubMed ID: 7805204
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.