BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 34818751)

  • 21. Influence of biopolymer emulsifier type on formation and stability of rice bran oil-in-water emulsions: whey protein, gum arabic, and modified starch.
    Charoen R; Jangchud A; Jangchud K; Harnsilawat T; Naivikul O; McClements DJ
    J Food Sci; 2011; 76(1):E165-72. PubMed ID: 21535669
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Emulsification and oxidation stabilities of DAG-rich algae oil-in-water emulsions prepared with the selected emulsifiers.
    Chang HJ; Lee JH
    J Sci Food Agric; 2020 Jan; 100(1):287-294. PubMed ID: 31525263
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Spray dried flaxseed oil powdered microcapsules obtained using milk whey proteins-alginate double layer emulsions.
    Fioramonti SA; Stepanic EM; Tibaldo AM; Pavón YL; Santiago LG
    Food Res Int; 2019 May; 119():931-940. PubMed ID: 30884733
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The composition and functional properties of whey protein concentrates produced from buttermilk are comparable with those of whey protein concentrates produced from skimmed milk.
    Svanborg S; Johansen AG; Abrahamsen RK; Skeie SB
    J Dairy Sci; 2015 Sep; 98(9):5829-40. PubMed ID: 26142868
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Heat-induced destabilization of oil-in-water emulsions formed from hydrolyzed whey protein.
    Euston SR; Finnigan SR; Hirst RL
    J Agric Food Chem; 2001 Nov; 49(11):5576-83. PubMed ID: 11714362
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Formation and characterization of noncovalent ternary complexes based on whey protein concentrate, high methoxyl pectin, and phenolic acid.
    Zhang Y; Li S; Yang Y; Wang C; Zhang T
    J Dairy Sci; 2022 Apr; 105(4):2963-2977. PubMed ID: 35123781
    [TBL] [Abstract][Full Text] [Related]  

  • 27. High internal phase emulsion stabilized by sodium caseinate:quercetin complex as antioxidant emulsifier.
    Santos MAS; Fonseca LR; Okuro PK; Cunha RL
    Food Res Int; 2023 Nov; 173(Pt 1):113247. PubMed ID: 37803560
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Competitive adsorption of dihydroxy and trihydroxy bile salts with whey protein and casein in oil-in-water emulsions.
    Euston SR; Baird WG; Campbell L; Kuhns M
    Biomacromolecules; 2013 Jun; 14(6):1850-8. PubMed ID: 23617462
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Kinetic study of aggregation of milk protein and/or surfactant-stabilized oil-in-water emulsions by sedimentation field-flow fractionation.
    Kenta S; Raikos V; Vagena A; Sevastos D; Kapolos J; Koliadima A; Karaiskakis G
    J Chromatogr A; 2013 Aug; 1305():221-9. PubMed ID: 23899382
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Production of a high gel strength whey protein concentrate from cheese whey.
    Veith PD; Reynolds EC
    J Dairy Sci; 2004 Apr; 87(4):831-40. PubMed ID: 15259217
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Phase inversion of ionomer-stabilized emulsions to form high internal phase emulsions (HIPEs).
    Zhang T; Xu Z; Cai Z; Guo Q
    Phys Chem Chem Phys; 2015 Jun; 17(24):16033-9. PubMed ID: 26028420
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of acidification and heating on the rheological properties of oil-water interfaces with adsorbed milk proteins.
    Mellema M; Isenbart JG
    J Dairy Sci; 2004 Sep; 87(9):2769-78. PubMed ID: 15375034
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Formation of shelf stable Pickering high internal phase emulsions (HIPE) through the inclusion of whey protein microgels.
    Zamani S; Malchione N; Selig MJ; Abbaspourrad A
    Food Funct; 2018 Feb; 9(2):982-990. PubMed ID: 29334398
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Development of stable flaxseed oil emulsions as a potential delivery system of ω-3 fatty acids.
    Goyal A; Sharma V; Upadhyay N; Singh AK; Arora S; Lal D; Sabikhi L
    J Food Sci Technol; 2015 Jul; 52(7):4256-65. PubMed ID: 26139890
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Interfacial and emulsifying properties of lentil protein isolate.
    Joshi M; Adhikari B; Aldred P; Panozzo JF; Kasapis S; Barrow CJ
    Food Chem; 2012 Oct; 134(3):1343-53. PubMed ID: 25005952
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Resveratrol inhibits lipid and protein co-oxidation in sodium caseinate-walnut oil emulsions by reinforcing oil-water interface.
    Gong T; Chen B; Hu CY; Guo YR; Shen YH; Meng YH
    Food Res Int; 2022 Aug; 158():111541. PubMed ID: 35840237
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Stress response and characterization of oil-in-water emulsions stabilized with Kluyveromyces marxianus mannoprotein.
    Hajhosseini A; Doroud D; Sharifan A; Eftekhari Z
    J Food Sci; 2021 Feb; 86(2):454-462. PubMed ID: 33438241
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nano-encapsulation of olive leaf phenolic compounds through WPC-pectin complexes and evaluating their release rate.
    Mohammadi A; Jafari SM; Assadpour E; Faridi Esfanjani A
    Int J Biol Macromol; 2016 Jan; 82():816-22. PubMed ID: 26459167
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Preparation of a multiple emulsion based on pectin-whey protein complex for encapsulation of saffron extract nanodroplets.
    Faridi Esfanjani A; Jafari SM; Assadpour E
    Food Chem; 2017 Apr; 221():1962-1969. PubMed ID: 27979187
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Formation of interfacial milk protein complexation to stabilize oil-in-water emulsions against calcium.
    Ye A; Lo J; Singh H
    J Colloid Interface Sci; 2012 Jul; 378(1):184-90. PubMed ID: 22579517
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.