These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 34819835)

  • 21. Organizing Sequential Memory in a Neuromorphic Device Using Dynamic Neural Fields.
    Kreiser R; Aathmani D; Qiao N; Indiveri G; Sandamirskaya Y
    Front Neurosci; 2018; 12():717. PubMed ID: 30524218
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Self-adaptive STDP-based learning of a spiking neuron with nanocomposite memristive weights.
    Emelyanov AV; Nikiruy KE; Serenko AV; Sitnikov AV; Presnyakov MY; Rybka RB; Sboev AG; Rylkov VV; Kashkarov PK; Kovalchuk MV; Demin VA
    Nanotechnology; 2020 Jan; 31(4):045201. PubMed ID: 31578002
    [TBL] [Abstract][Full Text] [Related]  

  • 23. All-memristive neuromorphic computing with level-tuned neurons.
    Pantazi A; Woźniak S; Tuma T; Eleftheriou E
    Nanotechnology; 2016 Sep; 27(35):355205. PubMed ID: 27455898
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Highly efficient neuromorphic learning system of spiking neural network with multi-compartment leaky integrate-and-fire neurons.
    Gao T; Deng B; Wang J; Yi G
    Front Neurosci; 2022; 16():929644. PubMed ID: 36248664
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Engineering Spiking Neurons Using Threshold Switching Devices for High-Efficient Neuromorphic Computing.
    Ding Y; Zhang Y; Zhang X; Chen P; Zhang Z; Yang Y; Cheng L; Mu C; Wang M; Xiang D; Wu G; Zhou K; Yuan Z; Liu Q
    Front Neurosci; 2021; 15():786694. PubMed ID: 35069102
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Towards spike-based machine intelligence with neuromorphic computing.
    Roy K; Jaiswal A; Panda P
    Nature; 2019 Nov; 575(7784):607-617. PubMed ID: 31776490
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Spike-timing-dependent plasticity learning of coincidence detection with passively integrated memristive circuits.
    Prezioso M; Mahmoodi MR; Bayat FM; Nili H; Kim H; Vincent A; Strukov DB
    Nat Commun; 2018 Dec; 9(1):5311. PubMed ID: 30552327
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A brain-plausible neuromorphic on-the-fly learning system implemented with magnetic domain wall analog memristors.
    Yue K; Liu Y; Lake RK; Parker AC
    Sci Adv; 2019 Apr; 5(4):eaau8170. PubMed ID: 31032402
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Synaptic weighting in single flux quantum neuromorphic computing.
    Schneider ML; Donnelly CA; Haygood IW; Wynn A; Russek SE; Castellanos-Beltran MA; Dresselhaus PD; Hopkins PF; Pufall MR; Rippard WH
    Sci Rep; 2020 Jan; 10(1):934. PubMed ID: 31969626
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Programmable Optical Synaptic Linking of Neuromorphic Photonic-Electronic RTD Spiking Circuits.
    Hejda M; Zhang W; Al-Taai QRA; Malysheva E; Owen-Newns D; Figueiredo JML; Romeira B; Robertson J; Dolores-Calzadilla V; Wasige E; Hurtado A
    ACS Photonics; 2024 Oct; 11(10):4279-4287. PubMed ID: 39429858
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bipolar Analog Memristors as Artificial Synapses for Neuromorphic Computing.
    Wang R; Shi T; Zhang X; Wang W; Wei J; Lu J; Zhao X; Wu Z; Cao R; Long S; Liu Q; Liu M
    Materials (Basel); 2018 Oct; 11(11):. PubMed ID: 30373122
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A neuromorphic implementation of multiple spike-timing synaptic plasticity rules for large-scale neural networks.
    Wang RM; Hamilton TJ; Tapson JC; van Schaik A
    Front Neurosci; 2015; 9():180. PubMed ID: 26041985
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ultra-low-energy three-dimensional oxide-based electronic synapses for implementation of robust high-accuracy neuromorphic computation systems.
    Gao B; Bi Y; Chen HY; Liu R; Huang P; Chen B; Liu L; Liu X; Yu S; Wong HS; Kang J
    ACS Nano; 2014 Jul; 8(7):6998-7004. PubMed ID: 24884237
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Superconducting disordered neural networks for neuromorphic processing with fluxons.
    Goteti US; Cai H; LeFebvre JC; Cybart SA; Dynes RC
    Sci Adv; 2022 Apr; 8(16):eabn4485. PubMed ID: 35452286
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Synchronization dynamics on the picosecond time scale in coupled Josephson junction neurons.
    Segall K; LeGro M; Kaplan S; Svitelskiy O; Khadka S; Crotty P; Schult D
    Phys Rev E; 2017 Mar; 95(3-1):032220. PubMed ID: 28415246
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A forecast-based STDP rule suitable for neuromorphic implementation.
    Davies S; Galluppi F; Rast AD; Furber SB
    Neural Netw; 2012 Aug; 32():3-14. PubMed ID: 22386500
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Toward Robust Cognitive 3D Brain-Inspired Cross-Paradigm System.
    Ben Abdallah A; Dang KN
    Front Neurosci; 2021; 15():690208. PubMed ID: 34248491
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Experimental Demonstration of Supervised Learning in Spiking Neural Networks with Phase-Change Memory Synapses.
    Nandakumar SR; Boybat I; Le Gallo M; Eleftheriou E; Sebastian A; Rajendran B
    Sci Rep; 2020 May; 10(1):8080. PubMed ID: 32415108
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reward-based learning under hardware constraints-using a RISC processor embedded in a neuromorphic substrate.
    Friedmann S; Frémaux N; Schemmel J; Gerstner W; Meier K
    Front Neurosci; 2013; 7():160. PubMed ID: 24065877
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An unsupervised neuromorphic clustering algorithm.
    Diamond A; Schmuker M; Nowotny T
    Biol Cybern; 2019 Aug; 113(4):423-437. PubMed ID: 30944983
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.