These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 34820109)

  • 1. Structure prediction of cyclic peptides by molecular dynamics + machine learning.
    Miao J; Descoteaux ML; Lin YS
    Chem Sci; 2021 Nov; 12(44):14927-14936. PubMed ID: 34820109
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Training Neural Network Models Using Molecular Dynamics Simulation Results to Efficiently Predict Cyclic Hexapeptide Structural Ensembles.
    Hui T; Descoteaux ML; Miao J; Lin YS
    J Chem Theory Comput; 2023 Jul; 19(14):4757-4769. PubMed ID: 37236147
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Designing Well-Structured Cyclic Pentapeptides Based on Sequence-Structure Relationships.
    Slough DP; McHugh SM; Cummings AE; Dai P; Pentelute BL; Kritzer JA; Lin YS
    J Phys Chem B; 2018 Apr; 122(14):3908-3919. PubMed ID: 29589926
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CREMP: Conformer-rotamer ensembles of macrocyclic peptides for machine learning.
    Grambow CA; Weir H; Cunningham CN; Biancalani T; Chuang KV
    Sci Data; 2024 Aug; 11(1):859. PubMed ID: 39122750
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Machine-learning-based methods to generate conformational ensembles of disordered proteins.
    Taneja I; Lasker K
    Biophys J; 2024 Jan; 123(1):101-113. PubMed ID: 38053335
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessing the Performance of Peptide Force Fields for Modeling the Solution Structural Ensembles of Cyclic Peptides.
    Miao J; Ghosh AP; Ho MN; Li C; Huang X; Pentelute BL; Baleja JD; Lin YS
    J Phys Chem B; 2024 Jun; 128(22):5281-5292. PubMed ID: 38785765
    [TBL] [Abstract][Full Text] [Related]  

  • 7. β-Branched Amino Acids Stabilize Specific Conformations of Cyclic Hexapeptides.
    Cummings AE; Miao J; Slough DP; McHugh SM; Kritzer JA; Lin YS
    Biophys J; 2019 Feb; 116(3):433-444. PubMed ID: 30661666
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CycPeptMP: enhancing membrane permeability prediction of cyclic peptides with multi-level molecular features and data augmentation.
    Li J; Yanagisawa K; Akiyama Y
    Brief Bioinform; 2024 Jul; 25(5):. PubMed ID: 39210505
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Machine Learning Generation of Dynamic Protein Conformational Ensembles.
    Zheng LE; Barethiya S; Nordquist E; Chen J
    Molecules; 2023 May; 28(10):. PubMed ID: 37241789
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Elucidating Solution Structures of Cyclic Peptides Using Molecular Dynamics Simulations.
    Damjanovic J; Miao J; Huang H; Lin YS
    Chem Rev; 2021 Feb; 121(4):2292-2324. PubMed ID: 33426882
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational Prediction of Cyclic Peptide Structural Ensembles and Application to the Design of Keap1 Binders.
    Fonseca Lopez F; Miao J; Damjanovic J; Bischof L; Braun MB; Ling Y; Hartmann MD; Lin YS; Kritzer JA
    J Chem Inf Model; 2023 Nov; 63(21):6925-6937. PubMed ID: 37917529
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct generation of protein conformational ensembles via machine learning.
    Janson G; Valdes-Garcia G; Heo L; Feig M
    Nat Commun; 2023 Feb; 14(1):774. PubMed ID: 36774359
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exhaustive Exploration of the Conformational Landscape of Small Cyclic Peptides Using a Robotics Approach.
    Jusot M; Stratmann D; Vaisset M; Chomilier J; Cortés J
    J Chem Inf Model; 2018 Nov; 58(11):2355-2368. PubMed ID: 30299093
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [A turning point in the knowledge of the structure-function-activity relations of elastin].
    Alix AJ
    J Soc Biol; 2001; 195(2):181-93. PubMed ID: 11727705
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cyclic Peptide Design Guided by Residual Dipolar Couplings, J-Couplings, and Intramolecular Hydrogen Bond Analysis.
    Farley KA; Che Y; Navarro-Vázquez A; Limberakis C; Anderson D; Yan J; Shapiro M; Shanmugasundaram V; Gil RR
    J Org Chem; 2019 Apr; 84(8):4803-4813. PubMed ID: 30605335
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis and conformational analysis by 1H NMR and restrained molecular dynamics simulations of the cyclic decapeptide [Ser-Tyr-Ser-Met-Glu-His-Phe-Arg-Trp-Gly].
    Buono RA; Kucharczyk N; Neuenschwander M; Kemmink J; Hwang LY; Fauchère JL; Venanzi CA
    J Comput Aided Mol Des; 1996 Jun; 10(3):213-32. PubMed ID: 8808738
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cyclic peptides: backbone rigidification and capability of mimicking motifs at protein-protein interfaces.
    Huang H; Damjanovic J; Miao J; Lin YS
    Phys Chem Chem Phys; 2021 Jan; 23(1):607-616. PubMed ID: 33331371
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Passing the Barrier - How Computer Simulations Can Help to Understand and Improve the Passive Membrane Permeability of Cyclic Peptides.
    Linker SM; Wang S; Ries B; Stadelmann T; Riniker S
    Chimia (Aarau); 2021 Jun; 75(6):518-521. PubMed ID: 34233816
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using
    Nguyen QNN; Schwochert J; Tantillo DJ; Lokey RS
    Phys Chem Chem Phys; 2018 May; 20(20):14003-14012. PubMed ID: 29744489
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.