These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Machine-learning-based methods to generate conformational ensembles of disordered proteins. Taneja I; Lasker K Biophys J; 2024 Jan; 123(1):101-113. PubMed ID: 38053335 [TBL] [Abstract][Full Text] [Related]
6. Assessing the Performance of Peptide Force Fields for Modeling the Solution Structural Ensembles of Cyclic Peptides. Miao J; Ghosh AP; Ho MN; Li C; Huang X; Pentelute BL; Baleja JD; Lin YS J Phys Chem B; 2024 Jun; 128(22):5281-5292. PubMed ID: 38785765 [TBL] [Abstract][Full Text] [Related]
7. β-Branched Amino Acids Stabilize Specific Conformations of Cyclic Hexapeptides. Cummings AE; Miao J; Slough DP; McHugh SM; Kritzer JA; Lin YS Biophys J; 2019 Feb; 116(3):433-444. PubMed ID: 30661666 [TBL] [Abstract][Full Text] [Related]
8. CycPeptMP: enhancing membrane permeability prediction of cyclic peptides with multi-level molecular features and data augmentation. Li J; Yanagisawa K; Akiyama Y Brief Bioinform; 2024 Jul; 25(5):. PubMed ID: 39210505 [TBL] [Abstract][Full Text] [Related]
11. Computational Prediction of Cyclic Peptide Structural Ensembles and Application to the Design of Keap1 Binders. Fonseca Lopez F; Miao J; Damjanovic J; Bischof L; Braun MB; Ling Y; Hartmann MD; Lin YS; Kritzer JA J Chem Inf Model; 2023 Nov; 63(21):6925-6937. PubMed ID: 37917529 [TBL] [Abstract][Full Text] [Related]
12. Direct generation of protein conformational ensembles via machine learning. Janson G; Valdes-Garcia G; Heo L; Feig M Nat Commun; 2023 Feb; 14(1):774. PubMed ID: 36774359 [TBL] [Abstract][Full Text] [Related]
13. Exhaustive Exploration of the Conformational Landscape of Small Cyclic Peptides Using a Robotics Approach. Jusot M; Stratmann D; Vaisset M; Chomilier J; Cortés J J Chem Inf Model; 2018 Nov; 58(11):2355-2368. PubMed ID: 30299093 [TBL] [Abstract][Full Text] [Related]
14. [A turning point in the knowledge of the structure-function-activity relations of elastin]. Alix AJ J Soc Biol; 2001; 195(2):181-93. PubMed ID: 11727705 [TBL] [Abstract][Full Text] [Related]
16. Cyclic Peptide Design Guided by Residual Dipolar Couplings, J-Couplings, and Intramolecular Hydrogen Bond Analysis. Farley KA; Che Y; Navarro-Vázquez A; Limberakis C; Anderson D; Yan J; Shapiro M; Shanmugasundaram V; Gil RR J Org Chem; 2019 Apr; 84(8):4803-4813. PubMed ID: 30605335 [TBL] [Abstract][Full Text] [Related]
17. Synthesis and conformational analysis by 1H NMR and restrained molecular dynamics simulations of the cyclic decapeptide [Ser-Tyr-Ser-Met-Glu-His-Phe-Arg-Trp-Gly]. Buono RA; Kucharczyk N; Neuenschwander M; Kemmink J; Hwang LY; Fauchère JL; Venanzi CA J Comput Aided Mol Des; 1996 Jun; 10(3):213-32. PubMed ID: 8808738 [TBL] [Abstract][Full Text] [Related]
18. Cyclic peptides: backbone rigidification and capability of mimicking motifs at protein-protein interfaces. Huang H; Damjanovic J; Miao J; Lin YS Phys Chem Chem Phys; 2021 Jan; 23(1):607-616. PubMed ID: 33331371 [TBL] [Abstract][Full Text] [Related]
19. Passing the Barrier - How Computer Simulations Can Help to Understand and Improve the Passive Membrane Permeability of Cyclic Peptides. Linker SM; Wang S; Ries B; Stadelmann T; Riniker S Chimia (Aarau); 2021 Jun; 75(6):518-521. PubMed ID: 34233816 [TBL] [Abstract][Full Text] [Related]