These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 34820394)
1. VTG-Net: A CNN Based Vessel Topology Graph Network for Retinal Artery/Vein Classification. Mishra S; Wang YX; Wei CC; Chen DZ; Hu XS Front Med (Lausanne); 2021; 8():750396. PubMed ID: 34820394 [TBL] [Abstract][Full Text] [Related]
2. A Convolutional Neural Network and Graph Convolutional Network Based Framework for Classification of Breast Histopathological Images. Gao Z; Lu Z; Wang J; Ying S; Shi J IEEE J Biomed Health Inform; 2022 Jul; 26(7):3163-3173. PubMed ID: 35196251 [TBL] [Abstract][Full Text] [Related]
3. TW-GAN: Topology and width aware GAN for retinal artery/vein classification. Chen W; Yu S; Ma K; Ji W; Bian C; Chu C; Shen L; Zheng Y Med Image Anal; 2022 Apr; 77():102340. PubMed ID: 35124367 [TBL] [Abstract][Full Text] [Related]
4. Dual-Coupled CNN-GCN-Based Classification for Hyperspectral and LiDAR Data. Wang L; Wang X Sensors (Basel); 2022 Jul; 22(15):. PubMed ID: 35957291 [TBL] [Abstract][Full Text] [Related]
5. Joint segmentation and classification of retinal arteries/veins from fundus images. Girard F; Kavalec C; Cheriet F Artif Intell Med; 2019 Mar; 94():96-109. PubMed ID: 30871687 [TBL] [Abstract][Full Text] [Related]
6. Cervical cell classification with graph convolutional network. Shi J; Wang R; Zheng Y; Jiang Z; Zhang H; Yu L Comput Methods Programs Biomed; 2021 Jan; 198():105807. PubMed ID: 33130497 [TBL] [Abstract][Full Text] [Related]
7. Semi-supervised classification of fundus images combined with CNN and GCN. Duan S; Huang P; Chen M; Wang T; Sun X; Chen M; Dong X; Jiang Z; Li D J Appl Clin Med Phys; 2022 Dec; 23(12):e13746. PubMed ID: 35946866 [TBL] [Abstract][Full Text] [Related]
8. MAMF-GCN: Multi-scale adaptive multi-channel fusion deep graph convolutional network for predicting mental disorder. Pan J; Lin H; Dong Y; Wang Y; Ji Y Comput Biol Med; 2022 Sep; 148():105823. PubMed ID: 35872410 [TBL] [Abstract][Full Text] [Related]
9. Scale-space approximated convolutional neural networks for retinal vessel segmentation. Noh KJ; Park SJ; Lee S Comput Methods Programs Biomed; 2019 Sep; 178():237-246. PubMed ID: 31416552 [TBL] [Abstract][Full Text] [Related]
10. From Local to Global: A Graph Framework for Retinal Artery/Vein Classification. Huang F; Tan T; Dashtbozorg B; Zhou Y; Romeny BMTH IEEE Trans Nanobioscience; 2020 Oct; 19(4):589-597. PubMed ID: 32746331 [TBL] [Abstract][Full Text] [Related]
11. Enhanced brain tumor classification using graph convolutional neural network architecture. Ravinder M; Saluja G; Allabun S; Alqahtani MS; Abbas M; Othman M; Soufiene BO Sci Rep; 2023 Sep; 13(1):14938. PubMed ID: 37697022 [TBL] [Abstract][Full Text] [Related]
12. Artery vein classification in fundus images using serially connected U-Nets. Karlsson RA; Hardarson SH Comput Methods Programs Biomed; 2022 Apr; 216():106650. PubMed ID: 35139461 [TBL] [Abstract][Full Text] [Related]
13. BSEResU-Net: An attention-based before-activation residual U-Net for retinal vessel segmentation. Li D; Rahardja S Comput Methods Programs Biomed; 2021 Jun; 205():106070. PubMed ID: 33857703 [TBL] [Abstract][Full Text] [Related]
14. Automatic Artery/Vein Classification Using a Vessel-Constraint Network for Multicenter Fundus Images. Hu J; Wang H; Cao Z; Wu G; Jonas JB; Wang YX; Zhang J Front Cell Dev Biol; 2021; 9():659941. PubMed ID: 34178986 [TBL] [Abstract][Full Text] [Related]
15. Semi-supervised point consistency network for retinal artery/vein classification. Hu J; Qiu L; Wang H; Zhang J Comput Biol Med; 2024 Jan; 168():107633. PubMed ID: 37992471 [TBL] [Abstract][Full Text] [Related]
16. Assessing retinal vein occlusion based on color fundus photographs using neural understanding network (NUN). Beeche C; Gezer NS; Iyer K; Almetwali O; Yu J; Zhang Y; Dhupar R; Leader JK; Pu J Med Phys; 2023 Jan; 50(1):449-464. PubMed ID: 36184848 [TBL] [Abstract][Full Text] [Related]