These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 34820592)

  • 1. Two-temperature preparation method for PDMS-based canine training aids for explosives.
    MacCrehan W; Young M; Schantz M; Angle TC; Waggoner P; Fischer T
    Forensic Chem; 2020 Dec; 21():. PubMed ID: 34820592
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of an odor permeable membrane device for the storage of explosives and use as canine training aids.
    Davis K; Reavis M; Goodpaster JV
    J Forensic Sci; 2023 May; 68(3):815-827. PubMed ID: 36912418
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of dominant odor chemicals emanating from explosives for use in developing optimal training aid combinations and mimics for canine detection.
    Harper RJ; Almirall JR; Furton KG
    Talanta; 2005 Aug; 67(2):313-27. PubMed ID: 18970171
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Laboratory and field experiments used to identify Canis lupus var. familiaris active odor signature chemicals from drugs, explosives, and humans.
    Lorenzo N; Wan T; Harper RJ; Hsu YL; Chow M; Rose S; Furton KG
    Anal Bioanal Chem; 2003 Aug; 376(8):1212-24. PubMed ID: 12845400
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Towards maintaining canine training aid integrity: Effects of environmental factors and operational use on the triacetone triperoxide polymer odor capture-and-release system.
    Cropper E; Riley P; Simon AG
    J Forensic Sci; 2024 May; 69(3):888-904. PubMed ID: 38528830
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of Mass Spectrometric Vapor Analysis To Improve Canine Explosive Detection Efficiency.
    Ong TH; Mendum T; Geurtsen G; Kelley J; Ostrinskaya A; Kunz R
    Anal Chem; 2017 Jun; 89(12):6482-6490. PubMed ID: 28598144
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reproducible vapor-time profiles using solid-phase microextraction with an externally sampled internal standard.
    MacCrehan W; Moore S; Schantz M
    J Chromatogr A; 2012 Jun; 1244():28-36. PubMed ID: 22633864
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of vapor profiles of explosives over time using ATASS (Automated Training Aid Simulation using SPME).
    Moore S; Maccrehan W; Schantz M
    Forensic Sci Int; 2011 Oct; 212(1-3):90-5. PubMed ID: 21696900
    [TBL] [Abstract][Full Text] [Related]  

  • 9. "Fooling fido"--chemical and behavioral studies of pseudo-explosive canine training aids.
    Kranz WD; Strange NA; Goodpaster JV
    Anal Bioanal Chem; 2014 Dec; 406(30):7817-25. PubMed ID: 25424725
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solid phase microextraction ion mobility spectrometer interface for explosive and taggant detection.
    Perr JM; Furton KG; Almirall JR
    J Sep Sci; 2005 Feb; 28(2):177-83. PubMed ID: 15754826
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Canine olfactory detection of trained explosive and narcotic odors in mixtures using a Mixed Odor Delivery Device.
    DeGreeff LE; Peranich K
    Forensic Sci Int; 2021 Dec; 329():111059. PubMed ID: 34715445
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of canine training aids containment for homemade explosive and components by headspace analysis and canine testing.
    Katilie CJ; DeGreeff LE; Sharpes CE; Best EM; Buckley PE; Gadberry JD; Maughan MN
    J Forensic Sci; 2023 Nov; 68(6):2021-2036. PubMed ID: 37691017
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improvements in the vapor-time profile analysis of explosive odorants using solid-phase microextraction.
    Young M; Schantz M; MacCrehan W
    J Chromatogr A; 2016 Jul; 1455():1-8. PubMed ID: 27286650
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization of headspace solid-phase microextraction gas chromatography-atomic emission detection analysis of monomethylmercury.
    Geerdink RB; Breidenbach R; Epema OJ
    J Chromatogr A; 2007 Dec; 1174(1-2):7-12. PubMed ID: 17904566
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemical and canine analysis as complimentary techniques for the identification of active odors of the invasive fungus, Raffaelea lauricola.
    Simon AG; Mills DK; Furton KG
    Talanta; 2017 Jun; 168():320-328. PubMed ID: 28391862
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comprehensive characterization of commercially available canine training aids.
    Tipple CA; Caldwell PT; Kile BM; Beussman DJ; Rushing B; Mitchell NJ; Whitchurch CJ; Grime M; Stockham R; Eckenrode BA
    Forensic Sci Int; 2014 Sep; 242():242-254. PubMed ID: 25093917
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optofluidic ring resonator sensors for rapid DNT vapor detection.
    Sun Y; Liu J; Frye-Mason G; Ja SJ; Thompson AK; Fan X
    Analyst; 2009 Jul; 134(7):1386-91. PubMed ID: 19562206
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of water adsorption into polar solid-phase microextraction materials with ultrathin polydimethylsiloxane coating for thermal desorption-gas chromatography analysis.
    Yan X; Zhan Y; Zhong D; Li Y; Wu D
    J Chromatogr A; 2018 Nov; 1578():1-7. PubMed ID: 30337167
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic planar solid phase microextraction-ion mobility spectrometry for rapid field air sampling and analysis of illicit drugs and explosives.
    Guerra-Diaz P; Gura S; Almirall JR
    Anal Chem; 2010 Apr; 82(7):2826-35. PubMed ID: 20205382
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective solid-phase microextraction of explosives using fibers coated with the La(III) complex of p-di(4,4,5,5,6,6,6-heptafluoro-1,3-hexanedionyl)benzene.
    Harvey SD
    J Chromatogr A; 2008 Dec; 1213(2):110-7. PubMed ID: 18995861
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.