These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 34820662)

  • 41. Analytical approaches for monitoring exposure to organophosphorus and carbamate agents through analysis of protein adducts.
    Schopfer LM; Lockridge O
    Drug Test Anal; 2012; 4(3-4):246-61. PubMed ID: 22359362
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Improvements of the fluoride reactivation method for the verification of nerve agent exposure.
    Degenhardt CE; Pleijsier K; van der Schans MJ; Langenberg JP; Preston KE; Solano MI; Maggio VL; Barr JR
    J Anal Toxicol; 2004; 28(5):364-71. PubMed ID: 15239857
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Trace level determination of selected organophosphorus pesticides and their degradation products in environmental air samples by liquid chromatography-positive ion electrospray tandem mass spectrometry.
    Raina R; Sun L
    J Environ Sci Health B; 2008 May; 43(4):323-32. PubMed ID: 18437620
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Oral administration of pyridostigmine bromide and huperzine A protects human whole blood cholinesterases from ex vivo exposure to soman.
    Gordon RK; Haigh JR; Garcia GE; Feaster SR; Riel MA; Lenz DE; Aisen PS; Doctor BP
    Chem Biol Interact; 2005 Dec; 157-158():239-46. PubMed ID: 16256090
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Current Progress for Retrospective Identification of Nerve Agent Biomarkers in Biological Samples after Exposure.
    Wang J; Lu X; Gao R; Pei C; Wang H
    Toxics; 2022 Aug; 10(8):. PubMed ID: 36006118
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Suitability of human butyrylcholinesterase as therapeutic marker and pseudo catalytic scavenger in organophosphate poisoning: a kinetic analysis.
    Aurbek N; Thiermann H; Eyer F; Eyer P; Worek F
    Toxicology; 2009 May; 259(3):133-9. PubMed ID: 19428953
    [TBL] [Abstract][Full Text] [Related]  

  • 47. V-type nerve agents phosphonylate ubiquitin at biologically relevant lysine residues and induce intramolecular cyclization by an isopeptide bond.
    Schmidt C; Breyer F; Blum MM; Thiermann H; Worek F; John H
    Anal Bioanal Chem; 2014 Aug; 406(21):5171-85. PubMed ID: 24652148
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Benzyl trichloroacetimidates as derivatizing agents for phosphonic acids related to nerve agents by EI-GC-MS during OPCW proficiency test scenarios.
    Subramanian A; Rosales JA; Leif RN; Valdez CA
    Sci Rep; 2022 Dec; 12(1):21299. PubMed ID: 36494565
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Mass spectrometric analysis of chemical warfare agents and their degradation products in soil and synthetic samples.
    D'Agostino PA; Hancock JR; Chenier CL
    Eur J Mass Spectrom (Chichester); 2003; 9(6):609-18. PubMed ID: 15100471
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Blood cholinesterases as human biomarkers of organophosphorus pesticide exposure.
    Nigg HN; Knaak JB
    Rev Environ Contam Toxicol; 2000; 163():29-111. PubMed ID: 10771584
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Gas chromatography/mass spectrometry analysis of reaction products of Chemical Weapons Convention-related 2-(N,N-dialkylamino)ethylchlorides with 2-(N,N-dialkylamino)ethanols.
    Rodda R; Malkapuri NS; Addipilli R; Vattem Venkata SL; Kantevari S; Thota JR; Sripadi P
    Rapid Commun Mass Spectrom; 2024 Aug; 38(16):e9834. PubMed ID: 38837438
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Fragmentation pathways and structural characterization of organophosphorus compounds related to the Chemical Weapons Convention by electron ionization and electrospray ionization tandem mass spectrometry.
    Hosseini SE; Saeidian H; Amozadeh A; Naseri MT; Babri M
    Rapid Commun Mass Spectrom; 2016 Dec; 30(24):2585-2593. PubMed ID: 27704643
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Lessons to be learnt from organophosphorus pesticide poisoning for the treatment of nerve agent poisoning.
    Thiermann H; Szinicz L; Eyer P; Felgenhauer N; Zilker T; Worek F
    Toxicology; 2007 Apr; 233(1-3):145-54. PubMed ID: 17161895
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Aging-resistant organophosphate bioscavenger based on polyethylene glycol-conjugated F338A human acetylcholinesterase.
    Mazor O; Cohen O; Kronman C; Raveh L; Stein D; Ordentlich A; Shafferman A
    Mol Pharmacol; 2008 Sep; 74(3):755-63. PubMed ID: 18523134
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Quantitation of five organophosphorus nerve agent metabolites in serum using hydrophilic interaction liquid chromatography and tandem mass spectrometry.
    Hamelin EI; Schulze ND; Shaner RL; Coleman RM; Lawrence RJ; Crow BS; Jakubowski EM; Johnson RC
    Anal Bioanal Chem; 2014 Aug; 406(21):5195-202. PubMed ID: 24633507
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Identification of S419 on human serum albumin as a novel biomarker for sarin and cyclosarin exposure.
    Fu F; Liu H; Lu X; Zhang R; Li L; Gao R; Xie J; Wang H; Pei C
    Rapid Commun Mass Spectrom; 2020 May; 34(9):e8721. PubMed ID: 31899842
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Nerve agent analogues that produce authentic soman, sarin, tabun, and cyclohexyl methylphosphonate-modified human butyrylcholinesterase.
    Gilley C; MacDonald M; Nachon F; Schopfer LM; Zhang J; Cashman JR; Lockridge O
    Chem Res Toxicol; 2009 Oct; 22(10):1680-8. PubMed ID: 19715348
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Immunopurification of Acetylcholinesterase from Red Blood Cells for Detection of Nerve Agent Exposure.
    Dafferner AJ; Schopfer LM; Xiao G; Cashman JR; Yerramalla U; Johnson RC; Blake TA; Lockridge O
    Chem Res Toxicol; 2017 Oct; 30(10):1897-1910. PubMed ID: 28892361
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Comparison of gas chromatography-mass spectrometry and gas chromatography-tandem mass spectrometry with electron ionization and negative-ion chemical ionization for analyses of pesticides at trace levels in atmospheric samples.
    Raina R; Hall P
    Anal Chem Insights; 2008 Sep; 3():111-25. PubMed ID: 19609395
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Application of gas chromatography-mass spectrometry and gas chromatography-tandem mass spectrometry to the analysis of chemical warfare samples, found to contain residues of the nerve agent sarin, sulphur mustard and their degradation products.
    Black RM; Clarke RJ; Read RW; Reid MT
    J Chromatogr A; 1994 Feb; 662(2):301-21. PubMed ID: 8143028
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.