BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 34820713)

  • 1. 14-3-3 protein regulation of excitation-contraction coupling.
    Thompson WC; Goldspink PH
    Pflugers Arch; 2022 Mar; 474(3):267-279. PubMed ID: 34820713
    [TBL] [Abstract][Full Text] [Related]  

  • 2. S100A1 and calmodulin regulation of ryanodine receptor in striated muscle.
    Prosser BL; Hernández-Ochoa EO; Schneider MF
    Cell Calcium; 2011 Oct; 50(4):323-31. PubMed ID: 21784520
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Membrane depolarization increases ryanodine sensitivity to Ca2+ release to the cytosol in L6 skeletal muscle cells: Implications for excitation-contraction coupling.
    Pitake S; Ochs RS
    Exp Biol Med (Maywood); 2016 Apr; 241(8):854-62. PubMed ID: 26643865
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Abnormal Excitation-Contraction Coupling and Calcium Homeostasis in Myopathies and Cardiomyopathies.
    Schartner V; Laporte J; Böhm J
    J Neuromuscul Dis; 2019; 6(3):289-305. PubMed ID: 31356215
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Loss of dysferlin or myoferlin results in differential defects in excitation-contraction coupling in mouse skeletal muscle.
    Barefield DY; Sell JJ; Tahtah I; Kearns SD; McNally EM; Demonbreun AR
    Sci Rep; 2021 Aug; 11(1):15865. PubMed ID: 34354129
    [TBL] [Abstract][Full Text] [Related]  

  • 6. From excitation to intracellular Ca
    Allard B
    Neuromuscul Disord; 2018 May; 28(5):394-401. PubMed ID: 29627324
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Excitation-contraction coupling and minor triadic proteins in low-frequency fatigue.
    Balog EM
    Exerc Sport Sci Rev; 2010 Jul; 38(3):135-42. PubMed ID: 20577062
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cannabinoid signalling inhibits sarcoplasmic Ca
    Oláh T; Bodnár D; Tóth A; Vincze J; Fodor J; Reischl B; Kovács A; Ruzsnavszky O; Dienes B; Szentesi P; Friedrich O; Csernoch L
    J Physiol; 2016 Dec; 594(24):7381-7398. PubMed ID: 27641745
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rem uncouples excitation-contraction coupling in adult skeletal muscle fibers.
    Beqollari D; Romberg CF; Filipova D; Meza U; Papadopoulos S; Bannister RA
    J Gen Physiol; 2015 Jul; 146(1):97-108. PubMed ID: 26078055
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-species transcriptomics reveals evolutionary diversity in the mechanisms regulating shrimp tail muscle excitation-contraction coupling.
    Huerlimann R; Maes GE; Maxwell MJ; Mobli M; Launikonis BS; Jerry DR; Wade NM
    Gene; 2020 Aug; 752():144765. PubMed ID: 32413480
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Troponin T3 regulates nuclear localization of the calcium channel Cavβ1a subunit in skeletal muscle.
    Zhang T; Taylor J; Jiang Y; Pereyra AS; Messi ML; Wang ZM; Hereñú C; Delbono O
    Exp Cell Res; 2015 Aug; 336(2):276-86. PubMed ID: 25981458
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanistic insights into store-operated Ca
    Koenig X; Choi RH; Schicker K; Singh DP; Hilber K; Launikonis BS
    Biochim Biophys Acta Mol Cell Res; 2019 Jul; 1866(7):1239-1248. PubMed ID: 30825472
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Models of excitation-contraction coupling in cardiac ventricular myocytes.
    Jafri MS
    Methods Mol Biol; 2012; 910():309-35. PubMed ID: 22821602
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Excitation-contraction coupling in skeletal muscle: questions remaining after 50 years of research].
    Calderón-Vélez JC; Figueroa-Gordon LC
    Biomedica; 2009 Mar; 29(1):140-60. PubMed ID: 19753848
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of excitation-contraction coupling between Drosophila and vertebrate muscle.
    Juracic ES
    J Physiol; 2022 Apr; 600(7):1579-1580. PubMed ID: 35138015
    [No Abstract]   [Full Text] [Related]  

  • 16. Physiology and pathophysiology of excitation-contraction coupling: the functional role of ryanodine receptor.
    Santulli G; Lewis DR; Marks AR
    J Muscle Res Cell Motil; 2017 Feb; 38(1):37-45. PubMed ID: 28653141
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of excitation-contraction coupling components in human extraocular muscles.
    Sekulic-Jablanovic M; Palmowski-Wolfe A; Zorzato F; Treves S
    Biochem J; 2015 Feb; 466(1):29-36. PubMed ID: 25387602
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Excitation-Contraction Coupling Alterations in Myopathies.
    Marty I; Fauré J
    J Neuromuscul Dis; 2016 Nov; 3(4):443-453. PubMed ID: 27911331
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ca2+-dependent regulations and signaling in skeletal muscle: from electro-mechanical coupling to adaptation.
    Gehlert S; Bloch W; Suhr F
    Int J Mol Sci; 2015 Jan; 16(1):1066-95. PubMed ID: 25569087
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Store-operated Ca(2+) entry (SOCE) contributes to normal skeletal muscle contractility in young but not in aged skeletal muscle.
    Thornton AM; Zhao X; Weisleder N; Brotto LS; Bougoin S; Nosek TM; Reid M; Hardin B; Pan Z; Ma J; Parness J; Brotto M
    Aging (Albany NY); 2011 Jun; 3(6):621-34. PubMed ID: 21666285
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.