BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

316 related articles for article (PubMed ID: 34820858)

  • 1. Chemically characterizing the cortical cell nano-structure of human hair using atomic force microscopy integrated with infrared spectroscopy (AFM-IR).
    Fellows AP; Casford MTL; Davies PB
    Int J Cosmet Sci; 2022 Feb; 44(1):42-55. PubMed ID: 34820858
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using hybrid atomic force microscopy and infrared spectroscopy (AFM-IR) to identify chemical components of the hair medulla on the nanoscale.
    Fellows AP; Casford MTL; Davies PB
    J Microsc; 2021 Dec; 284(3):189-202. PubMed ID: 34313326
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanoscale Molecular Characterization of Hair Cuticle Cells Using Integrated Atomic Force Microscopy-Infrared Laser Spectroscopy.
    Fellows AP; Casford MTL; Davies PB
    Appl Spectrosc; 2020 Dec; 74(12):1540-1550. PubMed ID: 32462900
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Localization of human hair structural lipids using nanoscale infrared spectroscopy and imaging.
    Marcott C; Lo M; Kjoller K; Fiat F; Baghdadli N; Balooch G; Luengo GS
    Appl Spectrosc; 2014; 68(5):564-9. PubMed ID: 25014600
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Atomic Force Microscopy Combined with Infrared Spectroscopy as a Tool to Probe Single Bacterium Chemistry.
    Kochan K; Peleg AY; Heraud P; Wood BR
    J Vis Exp; 2020 Sep; (163):. PubMed ID: 33016949
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization by Nano-Infrared Spectroscopy of Individual Aggregated Species of Amyloid Proteins.
    Waeytens J; Van Hemelryck V; Deniset-Besseau A; Ruysschaert JM; Dazzi A; Raussens V
    Molecules; 2020 Jun; 25(12):. PubMed ID: 32599698
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Matrix/mineral ratio and domain size variation with bone tissue age: A photothermal infrared study.
    Ahn T; Jueckstock M; Mandair GS; Henderson J; Sinder BP; Kozloff KM; Banaszak Holl MM
    J Struct Biol; 2022 Sep; 214(3):107878. PubMed ID: 35781024
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sub-Tip-Radius Near-Field Interactions in Nano-FTIR Vibrational Spectroscopy on Single Proteins.
    Nishida J; Otomo A; Koitaya T; Shiotari A; Minato T; Iino R; Kumagai T
    Nano Lett; 2024 Jan; 24(3):836-843. PubMed ID: 38193723
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multispectral Atomic Force Microscopy-Infrared Nano-Imaging of Malaria Infected Red Blood Cells.
    Perez-Guaita D; Kochan K; Batty M; Doerig C; Garcia-Bustos J; Espinoza S; McNaughton D; Heraud P; Wood BR
    Anal Chem; 2018 Mar; 90(5):3140-3148. PubMed ID: 29327915
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mapping the amide I absorption in single bacteria and mammalian cells with resonant infrared nanospectroscopy.
    Baldassarre L; Giliberti V; Rosa A; Ortolani M; Bonamore A; Baiocco P; Kjoller K; Calvani P; Nucara A
    Nanotechnology; 2016 Feb; 27(7):075101. PubMed ID: 26778320
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Infrared Nanospectroscopy of Air-Sensitive Biological Substrates Protected by Thin Hydrogel Films.
    Fellows AP; Casford MTL; Davies PB
    Biophys J; 2020 Oct; 119(8):1474-1480. PubMed ID: 33035449
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of the Internal Structure of Human Hair with Atomic Force Microscopy.
    McMullen RL; Zhang G
    J Cosmet Sci; 2020; 71(3):117-131. PubMed ID: 33022208
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of Bacterial Amyloids by Nano-infrared Spectroscopy.
    Raussens V; Waeytens J
    Methods Mol Biol; 2022; 2538():117-129. PubMed ID: 35951297
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Super-resolution mid-infrared spectro-microscopy of biological applications through tapping mode and peak force tapping mode atomic force microscope.
    Wang H; Xie Q; Xu XG
    Adv Drug Deliv Rev; 2022 Jan; 180():114080. PubMed ID: 34906646
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterizing Individual Protein Aggregates by Infrared Nanospectroscopy and Atomic Force Microscopy.
    Ruggeri FS; Šneideris T; Chia S; Vendruscolo M; Knowles TPJ
    J Vis Exp; 2019 Sep; (151):. PubMed ID: 31566623
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fourier-Transform Atomic Force Microscope-Based Photothermal Infrared Spectroscopy with Broadband Source.
    Xie Q; Xu XG
    Nano Lett; 2022 Nov; 22(22):9174-9180. PubMed ID: 36368003
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combined in situ atomic force microscopy-infrared-attenuated total reflection spectroscopy.
    Brucherseifer M; Kranz C; Mizaikoff B
    Anal Chem; 2007 Nov; 79(22):8803-6. PubMed ID: 17939644
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of Oxidative Stress in Red Blood Cells with Nanoscale Chemical Resolution by Infrared Nanospectroscopy.
    Ruggeri FS; Marcott C; Dinarelli S; Longo G; Girasole M; Dietler G; Knowles TPJ
    Int J Mol Sci; 2018 Aug; 19(9):. PubMed ID: 30200270
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Infrared microspectroscopy combined with conventional atomic force microscopy.
    Kwon B; Schulmerich MV; Elgass LJ; Kong R; Holton SE; Bhargava R; King WP
    Ultramicroscopy; 2012 May; 116():56-61. PubMed ID: 22537743
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanoscale insight into biochemical changes in cervical cancer cells exposed to adaptogenic drug.
    Pięta E
    Micron; 2023 Jul; 170():103462. PubMed ID: 37087964
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.