These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 34821147)

  • 1. Superelastic and Fire-Retardant Nano-/Microfibrous Sponges for High-Efficiency Warmth Retention.
    Zhang R; Gong X; Wang S; Tian Y; Liu Y; Zhang S; Yu J; Ding B
    ACS Appl Mater Interfaces; 2021 Dec; 13(48):58027-58035. PubMed ID: 34821147
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultralight and Mechanically Robust Fibrous Sponges Tailored by Semi-Interpenetrating Polymer Networks for Warmth Retention.
    Wu H; Zhao L; Zhang S; Si Y; Yu J; Ding B
    ACS Appl Mater Interfaces; 2021 Apr; 13(15):18165-18174. PubMed ID: 33834758
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stretchable and Superelastic Fibrous Sponges Tailored by "Stiff-Soft" Bicomponent Electrospun Fibers for Warmth Retention.
    Wu H; Li Y; Zhao L; Wang S; Tian Y; Si Y; Yu J; Ding B
    ACS Appl Mater Interfaces; 2020 Jun; 12(24):27562-27571. PubMed ID: 32452207
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultralight, Superelastic, and Washable Nanofibrous Sponges with Rigid-Flexible Coupling Architecture Enable Reusable Warmth Retention.
    Wu H; Cai H; Zhang S; Yu J; Ding B
    Nano Lett; 2022 Jan; 22(2):830-837. PubMed ID: 35005975
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultralight and Superelastic Curly Micro/Nanofibrous Aerogels by Direct Electrospinning Enable High-Performance Warmth Retention.
    Wang S; Zhu C; Wang F; Yu J; Zhang S; Ding B
    Small; 2023 Oct; 19(41):e2302835. PubMed ID: 37312622
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct synthesis of ultralight, elastic, high-temperature insulation N-doped TiO
    Cheng W; Jiao W; Fei Y; Yang Z; Zhang X; Wu F; Liu Y; Yin X; Ding B
    Nanoscale; 2024 Jan; 16(3):1135-1146. PubMed ID: 37999715
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Elastic Aerogels of Cellulose Nanofibers@Metal-Organic Frameworks for Thermal Insulation and Fire Retardancy.
    Zhou S; Apostolopoulou-Kalkavoura V; Tavares da Costa MV; Bergström L; Strømme M; Xu C
    Nanomicro Lett; 2019 Dec; 12(1):9. PubMed ID: 34138073
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Binary Polyamide-Imide Fibrous Superelastic Aerogels for Fire-Retardant and High-Temperature Air Filtration.
    Hua Y; Cui W; Ji Z; Wang X; Wu Z; Liu Y; Li Y
    Polymers (Basel); 2022 Nov; 14(22):. PubMed ID: 36433061
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultralight, highly thermally insulating and fire resistant aerogel by encapsulating cellulose nanofibers with two-dimensional MoS
    Yang L; Mukhopadhyay A; Jiao Y; Yong Q; Chen L; Xing Y; Hamel J; Zhu H
    Nanoscale; 2017 Aug; 9(32):11452-11462. PubMed ID: 28715015
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering Covalent Heterointerface Enables Superelastic Amorphous SiC Meta-Aerogels.
    Zhang X; Yu J; Zhao C; Si Y
    ACS Nano; 2023 Nov; 17(21):21813-21821. PubMed ID: 37909358
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study on the Synergetic Fire-Retardant Effect of Nano-Sb₂O₃ in PBT Matrix.
    Niu L; Xu J; Yang W; Ma J; Zhao J; Kang C; Su J
    Materials (Basel); 2018 Jun; 11(7):. PubMed ID: 29932164
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Designing of a Phosphorus, Nitrogen, and Sulfur Three-Flame Retardant Applied in a Gel Poly-
    Deng N; Liu Y; Wang L; Li Q; Hao Y; Feng Y; Cheng B; Kang W; Zhu W
    ACS Appl Mater Interfaces; 2019 Oct; 11(40):36705-36716. PubMed ID: 31507166
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Machine Learning and Structural Design to Optimize the Flame Retardancy of Polymer Nanocomposites with Graphene Oxide Hydrogen Bonded Zinc Hydroxystannate.
    Chen F; Wang J; Guo Z; Jiang F; Ouyang R; Ding P
    ACS Appl Mater Interfaces; 2021 Nov; 13(45):53425-53438. PubMed ID: 34482690
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expandable Graphite for Flame Retardant PA6 Applications.
    Tomiak F; Rathberger K; Schöffel A; Drummer D
    Polymers (Basel); 2021 Aug; 13(16):. PubMed ID: 34451272
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of Thermal Conductive Fillers on the Flame Retardancy, Thermal Conductivity, and Thermal Behavior of Flame-Retardant and Thermal Conductive Polyamide 6.
    Wang F; Shi W; Mai Y; Liao B
    Materials (Basel); 2019 Dec; 12(24):. PubMed ID: 31818046
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrathin Aerogel Micro/Nanofiber Membranes with Hierarchical Cellular Architecture for High-Performance Warmth Retention.
    Tian Y; Wang S; Yang M; Liu S; Yu J; Zhang S; Ding B
    ACS Nano; 2023 Dec; 17(24):25439-25448. PubMed ID: 38071622
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The improvement of fire safety performance of flexible polyurethane foam by Highly-efficient P-N-S elemental hybrid synergistic flame retardant.
    Zhang S; Chu F; Xu Z; Zhou Y; Qiu Y; Qian L; Hu Y; Wang B; Hu W
    J Colloid Interface Sci; 2022 Jan; 606(Pt 1):768-783. PubMed ID: 34419816
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Novel Inherently Flame-Retardant Composite Based on Zinc Alginate/Nano-Cu
    Xu P; Shao P; Zhang Q; Cheng W; Li Z; Li Q
    Polymers (Basel); 2019 Sep; 11(10):. PubMed ID: 31569681
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultralight, Thermally Insulating, Compressible Polyimide Fiber Assembled Sponges.
    Jiang S; Uch B; Agarwal S; Greiner A
    ACS Appl Mater Interfaces; 2017 Sep; 9(37):32308-32315. PubMed ID: 28840720
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of a Novel Flame Retardant on the Mechanical, Thermal and Combustion Properties of Poly(Lactic Acid).
    Niu M; Zhang Z; Wei Z; Wang W
    Polymers (Basel); 2020 Oct; 12(10):. PubMed ID: 33086626
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.