BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

338 related articles for article (PubMed ID: 34821260)

  • 1. Metal-semiconductor heterostructures for surface-enhanced Raman scattering: synergistic contribution of plasmons and charge transfer.
    Liu Y; Ma H; Han XX; Zhao B
    Mater Horiz; 2021 Feb; 8(2):370-382. PubMed ID: 34821260
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Semiconductor-enhanced Raman scattering: active nanomaterials and applications.
    Han XX; Ji W; Zhao B; Ozaki Y
    Nanoscale; 2017 Apr; 9(15):4847-4861. PubMed ID: 28150834
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Noble-Metal-Free Materials for Surface-Enhanced Raman Spectroscopy Detection.
    Tan X; Melkersson J; Wu S; Wang L; Zhang J
    Chemphyschem; 2016 Sep; 17(17):2630-9. PubMed ID: 27191682
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Particle-on-Film Gap Plasmons on Antireflective ZnO Nanocone Arrays for Molecular-Level Surface-Enhanced Raman Scattering Sensors.
    Lee Y; Lee J; Lee TK; Park J; Ha M; Kwak SK; Ko H
    ACS Appl Mater Interfaces; 2015 Dec; 7(48):26421-9. PubMed ID: 26575302
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Frequency Shift Surface-Enhanced Raman Spectroscopy Sensing: An Ultrasensitive Multiplex Assay for Biomarkers in Human Health.
    Zhu W; Hutchison JA; Dong M; Li M
    ACS Sens; 2021 May; 6(5):1704-1716. PubMed ID: 33939402
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Directional Damping of Plasmons at Metal-Semiconductor Interfaces.
    Liu G; Lou Y; Zhao Y; Burda C
    Acc Chem Res; 2022 Jul; 55(13):1845-1856. PubMed ID: 35696292
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metal/Semiconductor hybrid nanostructures for plasmon-enhanced applications.
    Jiang R; Li B; Fang C; Wang J
    Adv Mater; 2014 Aug; 26(31):5274-309. PubMed ID: 24753398
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Understanding Metal-Semiconductor Plasmonic Resonance Coupling through Surface-Enhanced Raman Scattering.
    Zhu L; Meng Z; Hu S; Zhao T; Zhao B
    ACS Appl Mater Interfaces; 2023 May; 15(18):22730-22736. PubMed ID: 37125659
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent Advances in Engineered Noble Metal Nanomaterials as a Surface-Enhanced Raman Scattering Active Platform for Cancer Diagnostics.
    Chen Y; Yu F; Wang Y; Liu W; Ye J; Xiao J; Liu X; Jiang H; Wang X
    J Biomed Nanotechnol; 2022 Jan; 18(1):1-23. PubMed ID: 35180897
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plasmonic Molybdenum Tungsten Oxide Hybrid with Surface-Enhanced Raman Scattering Comparable to that of Noble Metals.
    Li P; Zhu L; Ma C; Zhang L; Guo L; Liu Y; Ma H; Zhao B
    ACS Appl Mater Interfaces; 2020 Apr; 12(16):19153-19160. PubMed ID: 32233413
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly Efficient Photoinduced Enhanced Raman Spectroscopy (PIERS) from Plasmonic Nanoparticles Decorated 3D Semiconductor Arrays for Ultrasensitive, Portable, and Recyclable Detection of Organic Pollutants.
    Zhang M; Sun H; Chen X; Yang J; Shi L; Chen T; Bao Z; Liu J; Wu Y
    ACS Sens; 2019 Jun; 4(6):1670-1681. PubMed ID: 31117365
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Noble metal-free SERS: mechanisms and applications.
    Jin S; Zhang D; Yang B; Guo S; Chen L; Jung YM
    Analyst; 2023 Dec; 149(1):11-28. PubMed ID: 38051259
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrated Photoelectrochemical-SERS Platform Based on Plasmonic Metal-Semiconductor Heterostructures for Multidimensional Charge Transfer Analysis and Enhanced Patulin Detection.
    Liu S; Meng S; Li Y; Dong N; Wei Y; Li Y; Liu D; You T
    ACS Sens; 2024 Jun; 9(6):3377-3386. PubMed ID: 38783424
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface-Enhanced Raman Scattering (SERS) on transition metal and semiconductor nanostructures.
    Wang X; Shi W; She G; Mu L
    Phys Chem Chem Phys; 2012 May; 14(17):5891-901. PubMed ID: 22362151
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hot spots in different metal nanostructures for plasmon-enhanced Raman spectroscopy.
    Wei H; Xu H
    Nanoscale; 2013 Nov; 5(22):10794-805. PubMed ID: 24113688
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Latest Novelties on Plasmonic and Non-Plasmonic Nanomaterials for SERS Sensing.
    Barbillon G
    Nanomaterials (Basel); 2020 Jun; 10(6):. PubMed ID: 32575470
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SERS Activity of Semiconductors: Crystalline and Amorphous Nanomaterials.
    Wang X; Guo L
    Angew Chem Int Ed Engl; 2020 Mar; 59(11):4231-4239. PubMed ID: 31733023
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electric Field-Induced Chemical Surface-Enhanced Raman Spectroscopy Enhancement from Aligned Peptide Nanotube-Graphene Oxide Templates for Universal Trace Detection of Biomolecules.
    Almohammed S; Zhang F; Rodriguez BJ; Rice JH
    J Phys Chem Lett; 2019 Apr; 10(8):1878-1887. PubMed ID: 30925050
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanomaterials meet surface-enhanced Raman scattering towards enhanced clinical diagnosis: a review.
    Yuan K; Jurado-Sánchez B; Escarpa A
    J Nanobiotechnology; 2022 Dec; 20(1):537. PubMed ID: 36544151
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced Raman Scattering with Dielectrics.
    Alessandri I; Lombardi JR
    Chem Rev; 2016 Dec; 116(24):14921-14981. PubMed ID: 27739670
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.