These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
356 related articles for article (PubMed ID: 34821260)
1. Metal-semiconductor heterostructures for surface-enhanced Raman scattering: synergistic contribution of plasmons and charge transfer. Liu Y; Ma H; Han XX; Zhao B Mater Horiz; 2021 Feb; 8(2):370-382. PubMed ID: 34821260 [TBL] [Abstract][Full Text] [Related]
2. Semiconductor-enhanced Raman scattering: active nanomaterials and applications. Han XX; Ji W; Zhao B; Ozaki Y Nanoscale; 2017 Apr; 9(15):4847-4861. PubMed ID: 28150834 [TBL] [Abstract][Full Text] [Related]
3. Noble-Metal-Free Materials for Surface-Enhanced Raman Spectroscopy Detection. Tan X; Melkersson J; Wu S; Wang L; Zhang J Chemphyschem; 2016 Sep; 17(17):2630-9. PubMed ID: 27191682 [TBL] [Abstract][Full Text] [Related]
4. Particle-on-Film Gap Plasmons on Antireflective ZnO Nanocone Arrays for Molecular-Level Surface-Enhanced Raman Scattering Sensors. Lee Y; Lee J; Lee TK; Park J; Ha M; Kwak SK; Ko H ACS Appl Mater Interfaces; 2015 Dec; 7(48):26421-9. PubMed ID: 26575302 [TBL] [Abstract][Full Text] [Related]
5. Frequency Shift Surface-Enhanced Raman Spectroscopy Sensing: An Ultrasensitive Multiplex Assay for Biomarkers in Human Health. Zhu W; Hutchison JA; Dong M; Li M ACS Sens; 2021 May; 6(5):1704-1716. PubMed ID: 33939402 [TBL] [Abstract][Full Text] [Related]
6. Directional Damping of Plasmons at Metal-Semiconductor Interfaces. Liu G; Lou Y; Zhao Y; Burda C Acc Chem Res; 2022 Jul; 55(13):1845-1856. PubMed ID: 35696292 [TBL] [Abstract][Full Text] [Related]
7. Metal/Semiconductor hybrid nanostructures for plasmon-enhanced applications. Jiang R; Li B; Fang C; Wang J Adv Mater; 2014 Aug; 26(31):5274-309. PubMed ID: 24753398 [TBL] [Abstract][Full Text] [Related]
8. Understanding Metal-Semiconductor Plasmonic Resonance Coupling through Surface-Enhanced Raman Scattering. Zhu L; Meng Z; Hu S; Zhao T; Zhao B ACS Appl Mater Interfaces; 2023 May; 15(18):22730-22736. PubMed ID: 37125659 [TBL] [Abstract][Full Text] [Related]
9. Recent Advances in Engineered Noble Metal Nanomaterials as a Surface-Enhanced Raman Scattering Active Platform for Cancer Diagnostics. Chen Y; Yu F; Wang Y; Liu W; Ye J; Xiao J; Liu X; Jiang H; Wang X J Biomed Nanotechnol; 2022 Jan; 18(1):1-23. PubMed ID: 35180897 [TBL] [Abstract][Full Text] [Related]
10. Plasmonic Molybdenum Tungsten Oxide Hybrid with Surface-Enhanced Raman Scattering Comparable to that of Noble Metals. Li P; Zhu L; Ma C; Zhang L; Guo L; Liu Y; Ma H; Zhao B ACS Appl Mater Interfaces; 2020 Apr; 12(16):19153-19160. PubMed ID: 32233413 [TBL] [Abstract][Full Text] [Related]
11. Highly Efficient Photoinduced Enhanced Raman Spectroscopy (PIERS) from Plasmonic Nanoparticles Decorated 3D Semiconductor Arrays for Ultrasensitive, Portable, and Recyclable Detection of Organic Pollutants. Zhang M; Sun H; Chen X; Yang J; Shi L; Chen T; Bao Z; Liu J; Wu Y ACS Sens; 2019 Jun; 4(6):1670-1681. PubMed ID: 31117365 [TBL] [Abstract][Full Text] [Related]
12. Noble metal-free SERS: mechanisms and applications. Jin S; Zhang D; Yang B; Guo S; Chen L; Jung YM Analyst; 2023 Dec; 149(1):11-28. PubMed ID: 38051259 [TBL] [Abstract][Full Text] [Related]
13. Integrated Photoelectrochemical-SERS Platform Based on Plasmonic Metal-Semiconductor Heterostructures for Multidimensional Charge Transfer Analysis and Enhanced Patulin Detection. Liu S; Meng S; Li Y; Dong N; Wei Y; Li Y; Liu D; You T ACS Sens; 2024 Jun; 9(6):3377-3386. PubMed ID: 38783424 [TBL] [Abstract][Full Text] [Related]
14. Surface-Enhanced Raman Scattering (SERS) on transition metal and semiconductor nanostructures. Wang X; Shi W; She G; Mu L Phys Chem Chem Phys; 2012 May; 14(17):5891-901. PubMed ID: 22362151 [TBL] [Abstract][Full Text] [Related]
15. Hot spots in different metal nanostructures for plasmon-enhanced Raman spectroscopy. Wei H; Xu H Nanoscale; 2013 Nov; 5(22):10794-805. PubMed ID: 24113688 [TBL] [Abstract][Full Text] [Related]
16. SERS Activity of Semiconductors: Crystalline and Amorphous Nanomaterials. Wang X; Guo L Angew Chem Int Ed Engl; 2020 Mar; 59(11):4231-4239. PubMed ID: 31733023 [TBL] [Abstract][Full Text] [Related]
17. Electric Field-Induced Chemical Surface-Enhanced Raman Spectroscopy Enhancement from Aligned Peptide Nanotube-Graphene Oxide Templates for Universal Trace Detection of Biomolecules. Almohammed S; Zhang F; Rodriguez BJ; Rice JH J Phys Chem Lett; 2019 Apr; 10(8):1878-1887. PubMed ID: 30925050 [TBL] [Abstract][Full Text] [Related]
18. Nanomaterials meet surface-enhanced Raman scattering towards enhanced clinical diagnosis: a review. Yuan K; Jurado-Sánchez B; Escarpa A J Nanobiotechnology; 2022 Dec; 20(1):537. PubMed ID: 36544151 [TBL] [Abstract][Full Text] [Related]