BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

440 related articles for article (PubMed ID: 34821269)

  • 1. Flexible boron nitride-based memristor for in situ digital and analogue neuromorphic computing applications.
    Meng JL; Wang TY; He ZY; Chen L; Zhu H; Ji L; Sun QQ; Ding SJ; Bao WZ; Zhou P; Zhang DW
    Mater Horiz; 2021 Feb; 8(2):538-546. PubMed ID: 34821269
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transfer-Free Analog and Digital Flexible Memristors Based on Boron Nitride Films.
    Wang S; Liu X; Yu H; Liu X; Zhao J; Hou L; Gao Y; Chen Z
    Nanomaterials (Basel); 2024 Feb; 14(4):. PubMed ID: 38392700
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CMOS back-end compatible memristors for
    He ZY; Wang TY; Meng JL; Zhu H; Ji L; Sun QQ; Chen L; Zhang DW
    Mater Horiz; 2021 Nov; 8(12):3345-3355. PubMed ID: 34635907
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-Dimensional Nanoscale Flexible Memristor Networks with Ultralow Power for Information Transmission and Processing Application.
    Wang TY; Meng JL; Rao MY; He ZY; Chen L; Zhu H; Sun QQ; Ding SJ; Bao WZ; Zhou P; Zhang DW
    Nano Lett; 2020 Jun; 20(6):4111-4120. PubMed ID: 32186388
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Memristor-Based Neuromorphic Chips.
    Duan X; Cao Z; Gao K; Yan W; Sun S; Zhou G; Wu Z; Ren F; Sun B
    Adv Mater; 2024 Apr; 36(14):e2310704. PubMed ID: 38168750
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental demonstration of highly reliable dynamic memristor for artificial neuron and neuromorphic computing.
    Park SO; Jeong H; Park J; Bae J; Choi S
    Nat Commun; 2022 Jun; 13(1):2888. PubMed ID: 35660724
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synapse-Mimetic Hardware-Implemented Resistive Random-Access Memory for Artificial Neural Network.
    Seok H; Son S; Jathar SB; Lee J; Kim T
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991829
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A low-power vertical dual-gate neurotransistor with short-term memory for high energy-efficient neuromorphic computing.
    Xu H; Shang D; Luo Q; An J; Li Y; Wu S; Yao Z; Zhang W; Xu X; Dou C; Jiang H; Pan L; Zhang X; Wang M; Wang Z; Tang J; Liu Q; Liu M
    Nat Commun; 2023 Oct; 14(1):6385. PubMed ID: 37821427
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reconfigurable neuromorphic memristor network for ultralow-power smart textile electronics.
    Wang T; Meng J; Zhou X; Liu Y; He Z; Han Q; Li Q; Yu J; Li Z; Liu Y; Zhu H; Sun Q; Zhang DW; Chen P; Peng H; Chen L
    Nat Commun; 2022 Dec; 13(1):7432. PubMed ID: 36460675
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Attojoule Hexagonal Boron Nitride-Based Memristor for High-Performance Neuromorphic Computing.
    Kim J; Song J; Kwak H; Choi CW; Noh K; Moon S; Hwang H; Hwang I; Jeong H; Choi SY; Kim S; Kim JK
    Small; 2024 Jul; ():e2403737. PubMed ID: 38949018
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hybrid oxide brain-inspired neuromorphic devices for hardware implementation of artificial intelligence.
    Wang J; Zhuge X; Zhuge F
    Sci Technol Adv Mater; 2021 May; 22(1):326-344. PubMed ID: 34025215
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neuromorphic computation with spiking memristors: habituation, experimental instantiation of logic gates and a novel sequence-sensitive perceptron model.
    Gale EM
    Faraday Discuss; 2019 Feb; 213(0):521-551. PubMed ID: 30418449
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrafast and Low-Power 2D Bi
    Dong Z; Hua Q; Xi J; Shi Y; Huang T; Dai X; Niu J; Wang B; Wang ZL; Hu W
    Nano Lett; 2023 May; 23(9):3842-3850. PubMed ID: 37093653
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Versatile memristor for memory and neuromorphic computing.
    Guo T; Pan K; Jiao Y; Sun B; Du C; Mills JP; Chen Z; Zhao X; Wei L; Zhou YN; Wu YA
    Nanoscale Horiz; 2022 Feb; 7(3):299-310. PubMed ID: 35064257
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Training memristor-based multilayer neuromorphic networks with SGD, momentum and adaptive learning rates.
    Yan Z; Chen J; Hu R; Huang T; Chen Y; Wen S
    Neural Netw; 2020 Aug; 128():142-149. PubMed ID: 32446191
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Learning-Rate Modulable and Reliable TiO
    Jang J; Gi S; Yeo I; Choi S; Jang S; Ham S; Lee B; Wang G
    Adv Sci (Weinh); 2022 Aug; 9(22):e2201117. PubMed ID: 35666073
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hybrid memristor-CMOS neurons for in-situ learning in fully hardware memristive spiking neural networks.
    Zhang X; Lu J; Wang Z; Wang R; Wei J; Shi T; Dou C; Wu Z; Zhu J; Shang D; Xing G; Chan M; Liu Q; Liu M
    Sci Bull (Beijing); 2021 Aug; 66(16):1624-1633. PubMed ID: 36654296
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Memristors with Tunable Volatility for Reconfigurable Neuromorphic Computing.
    Woo KS; Park H; Ghenzi N; Talin AA; Jeong T; Choi JH; Oh S; Jang YH; Han J; Williams RS; Kumar S; Hwang CS
    ACS Nano; 2024 Jul; 18(26):17007-17017. PubMed ID: 38952324
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controllable digital and analog resistive switching behavior of 2D layered WSe
    Cheng S; Zhong L; Yin J; Duan H; Xie Q; Luo W; Jie W
    Nanoscale; 2023 Mar; 15(10):4801-4808. PubMed ID: 36779310
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tunable Resistive Switching in 2D MXene Ti
    Zhang X; Chen H; Cheng S; Guo F; Jie W; Hao J
    ACS Appl Mater Interfaces; 2022 Oct; 14(39):44614-44621. PubMed ID: 36136123
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.