These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 34821327)

  • 21. Decoupling Research of a Novel Three-Dimensional Force Flexible Tactile Sensor Based on an Improved BP Algorithm.
    Song Y; Wang F; Zhang Z
    Micromachines (Basel); 2018 May; 9(5):. PubMed ID: 30424169
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Novel Inverse Solution of Contact Force Based on a Sparse Tactile Sensor Array.
    Liu W; Gu C; Zeng R; Yu P; Fu X
    Sensors (Basel); 2018 Jan; 18(2):. PubMed ID: 29373489
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Flexible Capacitive Tactile Sensor Based on Micropatterned Dielectric Layer.
    Li T; Luo H; Qin L; Wang X; Xiong Z; Ding H; Gu Y; Liu Z; Zhang T
    Small; 2016 Sep; 12(36):5042-5048. PubMed ID: 27323288
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reaction Force Mapping by 3-Axis Tactile Sensing With Arbitrary Angles for Tissue Hard-Inclusion Localization.
    Li T; Pan A; Ren H
    IEEE Trans Biomed Eng; 2021 Jan; 68(1):26-35. PubMed ID: 32396067
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Carbonized Cotton Fabric-Based Flexible Capacitive Pressure Sensor Using a Porous Dielectric Layer with Tilted Air Gaps.
    Ko Y; Vu CC; Kim J
    Sensors (Basel); 2021 Jun; 21(11):. PubMed ID: 34200047
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Carbon Black/PDMS Based Flexible Capacitive Tactile Sensor for Multi-Directional Force Sensing.
    Zhu Y; Chen X; Chu K; Wang X; Hu Z; Su H
    Sensors (Basel); 2022 Jan; 22(2):. PubMed ID: 35062588
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Arrayed Force Sensors Made of Paper, Elastomer, and Hydrogel Particles.
    Zou X; Liang T; Lopez N; Ahmed M; Ajayan A; Mazzeo AD
    Micromachines (Basel); 2017 Dec; 8(12):. PubMed ID: 30400546
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ultrahigh-Sensitive Finlike Double-Sided E-Skin for Force Direction Detection.
    Zhao XF; Hang CZ; Wen XH; Liu MY; Zhang H; Yang F; Ma RG; Wang JC; Zhang DW; Lu HL
    ACS Appl Mater Interfaces; 2020 Mar; 12(12):14136-14144. PubMed ID: 32131586
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Highly sensitive flexible three-axis tactile sensors based on the interface contact resistance of microstructured graphene.
    Zhang J; Zhou LJ; Zhang HM; Zhao ZX; Dong SL; Wei S; Zhao J; Wang ZL; Guo B; Hu PA
    Nanoscale; 2018 Apr; 10(16):7387-7395. PubMed ID: 29595851
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Flexible Tactile Sensor Array for Slippage and Grooved Surface Recognition in Sliding Movement.
    Wang Y; Chen J; Mei D
    Micromachines (Basel); 2019 Aug; 10(9):. PubMed ID: 31480392
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tactile Sensing Applied to the Universal Gripper Using Conductive Thermoplastic Elastomer.
    Hughes J; Iida F
    Soft Robot; 2018 Oct; 5(5):512-526. PubMed ID: 30256733
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers.
    Mannsfeld SC; Tee BC; Stoltenberg RM; Chen CV; Barman S; Muir BV; Sokolov AN; Reese C; Bao Z
    Nat Mater; 2010 Oct; 9(10):859-64. PubMed ID: 20835231
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enhanced performance in capacitive force sensors using carbon nanotube/polydimethylsiloxane nanocomposites with high dielectric properties.
    Jang H; Yoon H; Ko Y; Choi J; Lee SS; Jeon I; Kim JH; Kim H
    Nanoscale; 2016 Mar; 8(10):5667-75. PubMed ID: 26899884
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A table-shaped tactile sensor for detecting triaxial force on the basis of strain distribution.
    Lee JI; Kim MG; Shikida M; Sato K
    Sensors (Basel); 2013 Nov; 13(12):16347-59. PubMed ID: 24287546
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Flexible Tactile Sensors for 3D Force Detection.
    Han C; Cao Z; Hu Y; Zhang Z; Li C; Wang ZL; Wu Z
    Nano Lett; 2024 May; 24(17):5277-5283. PubMed ID: 38624178
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Core-sheath nanofiber yarn for textile pressure sensor with high pressure sensitivity and spatial tactile acuity.
    Qi K; Wang H; You X; Tao X; Li M; Zhou Y; Zhang Y; He J; Shao W; Cui S
    J Colloid Interface Sci; 2020 Mar; 561():93-103. PubMed ID: 31812870
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Piezoelectric Nanogenerator for Highly Sensitive and Synchronous Multi-Stimuli Sensing.
    Huang X; Qin Q; Wang X; Xiang H; Zheng J; Lu Y; Lv C; Wu K; Yan L; Wang N; Xia C; Wang ZL
    ACS Nano; 2021 Dec; 15(12):19783-19792. PubMed ID: 34797042
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Porous-Structure-Promoted Tribo-Induced High-Performance Self-Powered Tactile Sensor toward Remote Human-Machine Interaction.
    Su L; Xiong Q; Wang H; Zi Y
    Adv Sci (Weinh); 2022 Nov; 9(32):e2203510. PubMed ID: 36073821
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A new approach for an ultrasensitive tactile sensor covering an ultrawide pressure range based on the hierarchical pressure-peak effect.
    Wu C; Zhang T; Zhang J; Huang J; Tang X; Zhou T; Rong Y; Huang Y; Shi S; Zeng D
    Nanoscale Horiz; 2020 Mar; 5(3):541-552. PubMed ID: 32118233
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dielectric Elastomer Artificial Muscle: Materials Innovations and Device Explorations.
    Qiu Y; Zhang E; Plamthottam R; Pei Q
    Acc Chem Res; 2019 Feb; 52(2):316-325. PubMed ID: 30698006
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.