BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

354 related articles for article (PubMed ID: 34821334)

  • 1. Hollow-porous fibers for intrinsically thermally insulating textiles and wearable electronics with ultrahigh working sensitivity.
    Yu Y; Zheng G; Dai K; Zhai W; Zhou K; Jia Y; Zheng G; Zhang Z; Liu C; Shen C
    Mater Horiz; 2021 Mar; 8(3):1037-1046. PubMed ID: 34821334
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hierarchical Porous Fibers for Intrinsically Thermally Insulated and Self-Sensing Integrated Smart Textile.
    Li C; Duan Y; Wang S; Wang S; Yu D; Wang L; Wang Y; Wu M
    ACS Appl Mater Interfaces; 2024 Mar; 16(11):14124-14132. PubMed ID: 38450639
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A highly stretchable and ultra-sensitive strain sensing fiber based on a porous core-network sheath configuration for wearable human motion detection.
    Liu J; Wang P; Li G; Yang L; Yu W; Meng C; Guo S
    Nanoscale; 2022 Sep; 14(34):12418-12430. PubMed ID: 35972043
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Core-sheath nanofiber yarn for textile pressure sensor with high pressure sensitivity and spatial tactile acuity.
    Qi K; Wang H; You X; Tao X; Li M; Zhou Y; Zhang Y; He J; Shao W; Cui S
    J Colloid Interface Sci; 2020 Mar; 561():93-103. PubMed ID: 31812870
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Smart Textile Based on 3D Stretchable Silver Nanowires/MXene Conductive Networks for Personal Healthcare and Thermal Management.
    Liu X; Miao J; Fan Q; Zhang W; Zuo X; Tian M; Zhu S; Zhang X; Qu L
    ACS Appl Mater Interfaces; 2021 Dec; 13(47):56607-56619. PubMed ID: 34786929
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent Advances in 1D Stretchable Electrodes and Devices for Textile and Wearable Electronics: Materials, Fabrications, and Applications.
    Lee J; Llerena Zambrano B; Woo J; Yoon K; Lee T
    Adv Mater; 2020 Feb; 32(5):e1902532. PubMed ID: 31495991
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An ultraflexible polyurethane yarn-based wearable strain sensor with a polydimethylsiloxane infiltrated multilayer sheath for smart textiles.
    Li X; Koh KH; Farhan M; Lai KWC
    Nanoscale; 2020 Feb; 12(6):4110-4118. PubMed ID: 32022071
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fully Printed Stretchable and Multifunctional E-Textiles for Aesthetic Wearable Electronic Systems.
    Tian B; Fang Y; Liang J; Zheng K; Guo P; Zhang X; Wu Y; Liu Q; Huang Z; Cao C; Wu W
    Small; 2022 Apr; 18(13):e2107298. PubMed ID: 35150063
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In Situ Formation of Ag Nanoparticles for Fiber Strain Sensors: Toward Textile-Based Wearable Applications.
    Kim H; Shaqeel A; Han S; Kang J; Yun J; Lee M; Lee S; Kim J; Noh S; Choi M; Lee J
    ACS Appl Mater Interfaces; 2021 Aug; 13(33):39868-39879. PubMed ID: 34383459
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly Conductive PVA/Ag Coating by Aqueous in Situ Reduction and Its Stretchable Structure for Strain Sensor.
    Li J; Wang L; Wang X; Yang Y; Hu Z; Liu L; Huang Y
    ACS Appl Mater Interfaces; 2020 Jan; 12(1):1427-1435. PubMed ID: 31847519
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly Sensitive Multifilament Fiber Strain Sensors with Ultrabroad Sensing Range for Textile Electronics.
    Lee J; Shin S; Lee S; Song J; Kang S; Han H; Kim S; Kim S; Seo J; Kim D; Lee T
    ACS Nano; 2018 May; 12(5):4259-4268. PubMed ID: 29617111
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Porous Conductive Textiles for Wearable Electronics.
    Ding Y; Jiang J; Wu Y; Zhang Y; Zhou J; Zhang Y; Huang Q; Zheng Z
    Chem Rev; 2024 Feb; 124(4):1535-1648. PubMed ID: 38373392
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultralight Heat-Insulating, Electrically Conductive Carbon Fibrous Sponges for Wearable Mechanosensing Devices with Advanced Warming Function.
    Gao Q; Tran T; Liao X; Rosenfeldt S; Gao C; Hou H; Retsch M; Agarwal S; Greiner A
    ACS Appl Mater Interfaces; 2022 May; 14(17):19918-19927. PubMed ID: 35452237
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent Progress of Textile-Based Wearable Electronics: A Comprehensive Review of Materials, Devices, and Applications.
    Heo JS; Eom J; Kim YH; Park SK
    Small; 2018 Jan; 14(3):. PubMed ID: 29205836
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reduced Graphene Oxide/Mesoporous ZnO NSs Hybrid Fibers for Flexible, Stretchable, Twisted, and Wearable NO
    Li W; Chen R; Qi W; Cai L; Sun Y; Sun M; Li C; Yang X; Xiang L; Xie D; Ren T
    ACS Sens; 2019 Oct; 4(10):2809-2818. PubMed ID: 31566369
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wearable Ionogel-Based Fibers for Strain Sensors with Ultrawide Linear Response and Temperature Sensors Insensitive to Strain.
    Wang F; Chen J; Cui X; Liu X; Chang X; Zhu Y
    ACS Appl Mater Interfaces; 2022 Jul; 14(26):30268-30278. PubMed ID: 35758312
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wearable E-Textiles Using a Textile-Centric Design Approach.
    Wu Y; Mechael SS; Carmichael TB
    Acc Chem Res; 2021 Nov; 54(21):4051-4064. PubMed ID: 34665618
    [TBL] [Abstract][Full Text] [Related]  

  • 18. UV Curable Conductive Ink for the Fabrication of Textile-Based Conductive Circuits and Wearable UHF RFID Tags.
    Hong H; Hu J; Yan X
    ACS Appl Mater Interfaces; 2019 Jul; 11(30):27318-27326. PubMed ID: 31284718
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dual-Core Capacitive Microfiber Sensor for Smart Textile Applications.
    Yu L; Feng Y; S/O M Tamil Selven D; Yao L; Soon RH; Yeo JC; Lim CT
    ACS Appl Mater Interfaces; 2019 Sep; 11(36):33347-33355. PubMed ID: 31424908
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrasensitive and Wearable Carbon Hybrid Fiber Devices as Robust Intelligent Sensors.
    Hu Y; Huang T; Zhang H; Lin H; Zhang Y; Ke L; Cao W; Hu K; Ding Y; Wang X; Rui K; Zhu J; Huang W
    ACS Appl Mater Interfaces; 2021 May; 13(20):23905-23914. PubMed ID: 33980008
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.