BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 34821622)

  • 1. High-Throughput, Label-Free Isolation of White Blood Cells from Whole Blood Using Parallel Spiral Microchannels with U-Shaped Cross-Section.
    Mehran A; Rostami P; Saidi MS; Firoozabadi B; Kashaninejad N
    Biosensors (Basel); 2021 Oct; 11(11):. PubMed ID: 34821622
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Slanted spiral microfluidics for the ultra-fast, label-free isolation of circulating tumor cells.
    Warkiani ME; Guan G; Luan KB; Lee WC; Bhagat AA; Chaudhuri PK; Tan DS; Lim WT; Lee SC; Chen PC; Lim CT; Han J
    Lab Chip; 2014 Jan; 14(1):128-37. PubMed ID: 23949794
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inertial microfluidics for continuous particle separation in spiral microchannels.
    Kuntaegowdanahalli SS; Bhagat AA; Kumar G; Papautsky I
    Lab Chip; 2009 Oct; 9(20):2973-80. PubMed ID: 19789752
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A low-cost and high-throughput benchtop cell sorter for isolating white blood cells from whole blood.
    Lu X; Tayebi M; Ai Y
    Electrophoresis; 2021 Nov; 42(21-22):2281-2292. PubMed ID: 34010478
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Continuous particle separation in spiral microchannels using Dean flows and differential migration.
    Bhagat AA; Kuntaegowdanahalli SS; Papautsky I
    Lab Chip; 2008 Nov; 8(11):1906-14. PubMed ID: 18941692
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Separation of CTCs from WBCs using DEP-assisted inertial manipulation: A numerical study.
    Uddin MR; Sarowar MT; Chen X
    Electrophoresis; 2023 Dec; 44(23):1781-1794. PubMed ID: 37753944
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-Throughput Separation of White Blood Cells From Whole Blood Using Inertial Microfluidics.
    Zhang J; Yuan D; Sluyter R; Yan S; Zhao Q; Xia H; Tan SH; Nguyen NT; Li W
    IEEE Trans Biomed Circuits Syst; 2017 Dec; 11(6):1422-1430. PubMed ID: 28866599
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improvement of size-based particle separation throughput in slanted spiral microchannel by modifying outlet geometry.
    Mihandoust A; Maleki-Jirsaraei N; Rouhani S; Safi S; Alizadeh M
    Electrophoresis; 2020 Mar; 41(5-6):353-359. PubMed ID: 32012295
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-throughput isolation of cancer cells in spiral microchannel by changing the direction, magnitude and location of the maximum velocity.
    Omrani V; Targhi MZ; Rahbarizadeh F; Nosrati R
    Sci Rep; 2023 Feb; 13(1):3213. PubMed ID: 36828913
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Zigzag microchannel for rigid inertial separation and enrichment (Z-RISE) of cells and particles.
    Razavi Bazaz S; Mihandust A; Salomon R; Joushani HAN; Li W; A Amiri H; Mirakhorli F; Zhand S; Shrestha J; Miansari M; Thierry B; Jin D; Ebrahimi Warkiani M
    Lab Chip; 2022 Oct; 22(21):4093-4109. PubMed ID: 36102894
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Size-tuneable isolation of cancer cells using stretchable inertial microfluidics.
    Fallahi H; Yadav S; Phan HP; Ta H; Zhang J; Nguyen NT
    Lab Chip; 2021 May; 21(10):2008-2018. PubMed ID: 34008666
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dean Flow Dynamics in Low-Aspect Ratio Spiral Microchannels.
    Nivedita N; Ligrani P; Papautsky I
    Sci Rep; 2017 Mar; 7():44072. PubMed ID: 28281579
    [TBL] [Abstract][Full Text] [Related]  

  • 13. One-Step Microfluidic Purification of White Blood Cells from Whole Blood for Immunophenotyping.
    Kim B; Kim KH; Chang Y; Shin S; Shin EC; Choi S
    Anal Chem; 2019 Oct; 91(20):13230-13236. PubMed ID: 31556985
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A curved expansion-contraction microfluidic structure for inertial based separation of circulating tumor cells from blood samples.
    Ebrahimi S; Alishiri M; Pishbin E; Afjoul H; Shamloo A
    J Chromatogr A; 2023 Aug; 1705():464200. PubMed ID: 37429078
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design of a novel integrated microfluidic chip for continuous separation of circulating tumor cells from peripheral blood cells.
    Bakhshi MS; Rizwan M; Khan GJ; Duan H; Zhai K
    Sci Rep; 2022 Oct; 12(1):17016. PubMed ID: 36220844
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-throughput blood cell focusing and plasma isolation using spiral inertial microfluidic devices.
    Xiang N; Ni Z
    Biomed Microdevices; 2015 Dec; 17(6):110. PubMed ID: 26553099
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fully-automated and field-deployable blood leukocyte separation platform using multi-dimensional double spiral (MDDS) inertial microfluidics.
    Jeon H; Jundi B; Choi K; Ryu H; Levy BD; Lim G; Han J
    Lab Chip; 2020 Sep; 20(19):3612-3624. PubMed ID: 32990714
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Continuous-flow microfluidic blood cell sorting for unprocessed whole blood using surface-micromachined microfiltration membranes.
    Li X; Chen W; Liu G; Lu W; Fu J
    Lab Chip; 2014 Jul; 14(14):2565-75. PubMed ID: 24895109
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inertia-Acoustophoresis Hybrid Microfluidic Device for Rapid and Efficient Cell Separation.
    Kim U; Oh B; Ahn J; Lee S; Cho Y
    Sensors (Basel); 2022 Jun; 22(13):. PubMed ID: 35808206
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Hybrid Spiral Microfluidic Platform Coupled with Surface Acoustic Waves for Circulating Tumor Cell Sorting and Separation: A Numerical Study.
    Altay R; Yapici MK; Koşar A
    Biosensors (Basel); 2022 Mar; 12(3):. PubMed ID: 35323441
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.