These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 34821686)

  • 1. Recent Advances in Electrical Impedance Sensing Technology for Single-Cell Analysis.
    Zhang Z; Huang X; Liu K; Lan T; Wang Z; Zhu Z
    Biosensors (Basel); 2021 Nov; 11(11):. PubMed ID: 34821686
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-Efficiency Single-Cell Electrical Impedance Spectroscopy.
    Feng Y; Huang L; Zhao P; Liang F; Wang W
    Methods Mol Biol; 2023; 2644():81-97. PubMed ID: 37142917
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Microfluidic Device Integrating Impedance Flow Cytometry and Electric Impedance Spectroscopy for High-Efficiency Single-Cell Electrical Property Measurement.
    Feng Y; Huang L; Zhao P; Liang F; Wang W
    Anal Chem; 2019 Dec; 91(23):15204-15212. PubMed ID: 31702127
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dielectric spectroscopy as a viable biosensing tool for cell and tissue characterization and analysis.
    Heileman K; Daoud J; Tabrizian M
    Biosens Bioelectron; 2013 Nov; 49():348-59. PubMed ID: 23796534
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Concepts, electrode configuration, characterization, and data analytics of electric and electrochemical microfluidic platforms: a review.
    Nguyen TH; Nguyen HA; Tran Thi YV; Hoang Tran D; Cao H; Chu Duc T; Bui TT; Do Quang L
    Analyst; 2023 May; 148(9):1912-1929. PubMed ID: 36928639
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic monitoring of single cell lysis in an impedance-based microfluidic device.
    Zhou Y; Basu S; Laue ED; Seshia AA
    Biomed Microdevices; 2016 Aug; 18(4):56. PubMed ID: 27299468
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Positional dependence of particles and cells in microfluidic electrical impedance flow cytometry: origin, challenges and opportunities.
    Daguerre H; Solsona M; Cottet J; Gauthier M; Renaud P; Bolopion A
    Lab Chip; 2020 Oct; 20(20):3665-3689. PubMed ID: 32914827
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neural network-enhanced real-time impedance flow cytometry for single-cell intrinsic characterization.
    Feng Y; Cheng Z; Chai H; He W; Huang L; Wang W
    Lab Chip; 2022 Jan; 22(2):240-249. PubMed ID: 34849522
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impedance-Based Multimodal Electrical-Mechanical Intrinsic Flow Cytometry.
    Feng Y; Zhu J; Chai H; He W; Huang L; Wang W
    Small; 2023 Nov; 19(45):e2303416. PubMed ID: 37438542
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluating the Accuracy of Impedance Flow Cytometry with Cell-Sized Liposomes.
    Chai H; Feng Y; Zhu J; Meng X; Liang F; Bai J; Wang W
    ACS Sens; 2023 Jul; 8(7):2681-2690. PubMed ID: 37347966
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrical Characterization and Analysis of Single Cells and Related Applications.
    Zhu W; Wang J; Luo H; Luo B; Li X; Liu S; Li C
    Biosensors (Basel); 2023 Sep; 13(10):. PubMed ID: 37887100
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biophysical phenotyping of single cells using a differential multiconstriction microfluidic device with self-aligned 3D electrodes.
    Yang D; Zhou Y; Zhou Y; Han J; Ai Y
    Biosens Bioelectron; 2019 May; 133():16-23. PubMed ID: 30903937
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent Approaches to Design and Analysis of Electrical Impedance Systems for Single Cells Using Machine Learning.
    Ferguson C; Zhang Y; Palego C; Cheng X
    Sensors (Basel); 2023 Jun; 23(13):. PubMed ID: 37447838
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CMOS based whole cell impedance sensing: Challenges and future outlook.
    Hedayatipour A; Aslanzadeh S; McFarlane N
    Biosens Bioelectron; 2019 Oct; 143():111600. PubMed ID: 31479988
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microfluidic Impedance-Deformability Cytometry for Label-Free Single Neutrophil Mechanophenotyping.
    Petchakup C; Yang H; Gong L; He L; Tay HM; Dalan R; Chung AJ; Li KHH; Hou HW
    Small; 2022 May; 18(18):e2104822. PubMed ID: 35253966
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microfluidic impedance flow cytometry enabling high-throughput single-cell electrical property characterization.
    Chen J; Xue C; Zhao Y; Chen D; Wu MH; Wang J
    Int J Mol Sci; 2015 Apr; 16(5):9804-30. PubMed ID: 25938973
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidic impedance cytometry for single-cell sensing: Review on electrode configurations.
    Zhu S; Zhang X; Zhou Z; Han Y; Xiang N; Ni Z
    Talanta; 2021 Oct; 233():122571. PubMed ID: 34215067
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An impedance flow cytometry with integrated dual microneedle for electrical properties characterization of single cell.
    Mansor MA; Ahmad MR; Petrů M; Rahimian Koloor SS
    Artif Cells Nanomed Biotechnol; 2023 Dec; 51(1):371-383. PubMed ID: 37548425
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of microfluidic impedance cytometry enabling the quantification of specific membrane capacitance and cytoplasm conductivity from 100,000 single cells.
    Zhao Y; Wang K; Chen D; Fan B; Xu Y; Ye Y; Wang J; Chen J; Huang C
    Biosens Bioelectron; 2018 Jul; 111():138-143. PubMed ID: 29665553
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-Speed Single-Cell Dielectric Spectroscopy.
    Spencer D; Morgan H
    ACS Sens; 2020 Feb; 5(2):423-430. PubMed ID: 32013406
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.