These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 34821992)

  • 1. A lattice Boltzmann study of particle settling in a fluctuating multicomponent fluid under confinement.
    Xue X; Biferale L; Sbragaglia M; Toschi F
    Eur Phys J E Soft Matter; 2021 Nov; 44(11):142. PubMed ID: 34821992
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lattice Boltzmann simulations of nonequilibrium fluctuations in a nonideal binary mixture.
    Belardinelli D; Sbragaglia M; Benzi R; Ciliberto S
    Phys Rev E; 2019 Jun; 99(6-1):063302. PubMed ID: 31330737
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of numerical resolution on the dynamics of finite-size particles with the lattice Boltzmann method.
    Livi C; Di Staso G; Clercx HJH; Toschi F
    Phys Rev E; 2021 Jan; 103(1-1):013303. PubMed ID: 33601495
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluctuating multicomponent lattice Boltzmann model.
    Belardinelli D; Sbragaglia M; Biferale L; Gross M; Varnik F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):023313. PubMed ID: 25768641
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non-Stokesian dynamics of magnetic helical nanoswimmers under confinement.
    Fazeli A; Thakore V; Ala-Nissila T; Karttunen M
    PNAS Nexus; 2024 May; 3(5):pgae182. PubMed ID: 38765716
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diffusion of finite-size particles in confined geometries.
    Bruna M; Chapman SJ
    Bull Math Biol; 2014 Apr; 76(4):947-82. PubMed ID: 23660951
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modelling the Hindered Settling Velocity of a Falling Particle in a Particle-Fluid Mixture by the Tsallis Entropy Theory.
    Zhu Z; Wang H; Peng D; Dou J
    Entropy (Basel); 2019 Jan; 21(1):. PubMed ID: 33266771
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coupling of multiscale lattice Boltzmann discrete-element method for reactive particle fluid flows.
    Maier ML; Patel RA; Prasianakis NI; Churakov SV; Nirschl H; Krause MJ
    Phys Rev E; 2021 Mar; 103(3-1):033306. PubMed ID: 33862794
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Non-Newtonian unconfined flow and heat transfer over a heated cylinder using the direct-forcing immersed boundary-thermal lattice Boltzmann method.
    Amiri Delouei A; Nazari M; Kayhani MH; Succi S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):053312. PubMed ID: 25353919
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrophoretic motion of a spherical particle in a converging-diverging nanotube.
    Qian S; Wang A; Afonien JK
    J Colloid Interface Sci; 2006 Nov; 303(2):579-92. PubMed ID: 16979648
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combining molecular dynamics with Lattice Boltzmann: a hybrid method for the simulation of (charged) colloidal systems.
    Chatterji A; Horbach J
    J Chem Phys; 2005 May; 122(18):184903. PubMed ID: 15918761
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magnetic Actuation of Surface Walkers: The Effects of Confinement and Inertia.
    Fang WZ; Ham S; Qiao R; Tao WQ
    Langmuir; 2020 Jun; 36(25):7046-7055. PubMed ID: 32125866
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Numerical simulation of particle motion in an ultrasound field using the lattice Boltzmann model.
    Cosgrove JA; Buick JM; Campbell DM; Greated CA
    Ultrasonics; 2004 Oct; 43(1):21-5. PubMed ID: 15358525
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lattice Boltzmann simulations of settling behaviors of irregularly shaped particles.
    Zhang P; Galindo-Torres SA; Tang H; Jin G; Scheuermann A; Li L
    Phys Rev E; 2016 Jun; 93(6):062612. PubMed ID: 27415325
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On particle motion in a confined square domain filled with active fluids.
    Ye H; Ouyang Z; Lin J
    Soft Matter; 2024 Feb; 20(8):1786-1799. PubMed ID: 38305105
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3-D transient electrophoretic motion of a spherical particle in a T-shaped rectangular microchannel.
    Ye C; Li D
    J Colloid Interface Sci; 2004 Apr; 272(2):480-8. PubMed ID: 15028514
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of particle-fluid density ratio on the interactions between the turbulent channel flow and finite-size particles.
    Yu Z; Lin Z; Shao X; Wang LP
    Phys Rev E; 2017 Sep; 96(3-1):033102. PubMed ID: 29346864
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrodynamic description of the long-time tails of the linear and rotational velocity autocorrelation functions of a particle in a confined geometry.
    Frydel D; Rice SA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Dec; 76(6 Pt 1):061404. PubMed ID: 18233847
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of particle volume fraction on the settling velocity of volcanic ash particles: insights from joint experimental and numerical simulations.
    Del Bello E; Taddeucci J; De' Michieli Vitturi M; Scarlato P; Andronico D; Scollo S; Kueppers U; Ricci T
    Sci Rep; 2017 Jan; 7():39620. PubMed ID: 28045056
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lattice-Boltzmann simulations of the dynamics of polymer solutions in periodic and confined geometries.
    Berk Usta O; Ladd AJ; Butler JE
    J Chem Phys; 2005 Mar; 122(9):094902. PubMed ID: 15836176
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.