These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 34822094)

  • 1. COVID-19 pandemic and sudden rise in crop residue burning in India: issues and prospects for sustainable crop residue management.
    Ravindra K; Singh T; Mor S
    Environ Sci Pollut Res Int; 2022 Jan; 29(2):3155-3161. PubMed ID: 34822094
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crop Residue Burning in India: Policy Challenges and Potential Solutions.
    Bhuvaneshwari S; Hettiarachchi H; Meegoda JN
    Int J Environ Res Public Health; 2019 Mar; 16(5):. PubMed ID: 30866483
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Understanding seasonal variation in ambient air quality and its relationship with crop residue burning activities in an agrarian state of India.
    Mor S; Singh T; Bishnoi NR; Bhukal S; Ravindra K
    Environ Sci Pollut Res Int; 2022 Jan; 29(3):4145-4158. PubMed ID: 34405330
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hotspot driven air pollution during crop residue burning season in the Indo-Gangetic Plain, India.
    Saharan US; Kumar R; Singh S; Mandal TK; Sateesh M; Verma S; Srivastava A
    Environ Pollut; 2024 Jun; 350():124013. PubMed ID: 38670421
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A high-resolution emission inventory of air pollutants from primary crop residue burning over Northern India based on VIIRS thermal anomalies.
    Singh T; Biswal A; Mor S; Ravindra K; Singh V; Mor S
    Environ Pollut; 2020 Nov; 266(Pt 1):115132. PubMed ID: 32717556
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Understanding the influence of summer biomass burning on air quality in North India: Eight cities field campaign study.
    Ravindra K; Singh T; Singh V; Chintalapati S; Beig G; Mor S
    Sci Total Environ; 2023 Feb; 861():160361. PubMed ID: 36464043
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crop residue burning in South Asia: A review of the scale, effect, and solutions with a focus on reducing reactive nitrogen losses.
    Lin M; Begho T
    J Environ Manage; 2022 Jul; 314():115104. PubMed ID: 35462257
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantifying the high resolution seasonal emission of air pollutants from crop residue burning in India.
    Sahu SK; Mangaraj P; Beig G; Samal A; Chinmay Pradhan ; Dash S; Tyagi B
    Environ Pollut; 2021 Oct; 286():117165. PubMed ID: 33971471
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Climatology and landscape determinants of AOD, SO
    Chawala P; Priyan R S; Sm SN
    Environ Res; 2023 Mar; 220():115125. PubMed ID: 36592806
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A mixed-methods community-based participatory research to explore stakeholder's perspectives and to quantify the effect of crop residue burning on air and human health in Central India: study protocol.
    Trushna T; Diwan V; Nandi SS; Aher SB; Tiwari RR; Sabde YD
    BMC Public Health; 2020 Nov; 20(1):1824. PubMed ID: 33256650
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Air quality impacts of crop residue burning in India and mitigation alternatives.
    Lan R; Eastham SD; Liu T; Norford LK; Barrett SRH
    Nat Commun; 2022 Nov; 13(1):6537. PubMed ID: 36376316
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of stubble burning on air quality of Northern India: a case study of Indo-Gangetic plains of India.
    Singh A; Vishnoi AS; Banday AH; Bora P; Pandey P
    Environ Monit Assess; 2023 Mar; 195(4):487. PubMed ID: 36939944
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fire regimes and potential bioenergy loss from agricultural lands in the Indo-Gangetic Plains.
    Vadrevu K; Lasko K
    J Environ Manage; 2015 Jan; 148():10-20. PubMed ID: 24502932
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of PM
    Lakshmi NB; Resmi EA; Padmalal D
    Sci Total Environ; 2022 Aug; 833():155215. PubMed ID: 35421507
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Greenhouse gas emissions from agricultural residue burning have increased by 75 % since 2011 across India.
    Deshpande MV; Kumar N; Pillai D; Krishna VV; Jain M
    Sci Total Environ; 2023 Dec; 904():166944. PubMed ID: 37704137
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How Much Does Large-Scale Crop Residue Burning Affect the Air Quality in Delhi?
    Kulkarni SH; Ghude SD; Jena C; Karumuri RK; Sinha B; Sinha V; Kumar R; Soni VK; Khare M
    Environ Sci Technol; 2020 Apr; 54(8):4790-4799. PubMed ID: 32189491
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diurnal and temporal changes in air pollution during COVID-19 strict lockdown over different regions of India.
    Singh V; Singh S; Biswal A; Kesarkar AP; Mor S; Ravindra K
    Environ Pollut; 2020 Nov; 266(Pt 3):115368. PubMed ID: 32829030
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ambient air quality changes after stubble burning in rice-wheat system in an agricultural state of India.
    Grover D; Chaudhry S
    Environ Sci Pollut Res Int; 2019 Jul; 26(20):20550-20559. PubMed ID: 31102215
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determinants of crop residue burning practice in the Terai region of Nepal.
    Bajracharya SB; Mishra A; Maharjan A
    PLoS One; 2021; 16(7):e0253939. PubMed ID: 34197535
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of biomass burning on regional aerosol optical properties: A case study over northern India.
    Shaik DS; Kant Y; Mitra D; Singh A; Chandola HC; Sateesh M; Babu SS; Chauhan P
    J Environ Manage; 2019 Aug; 244():328-343. PubMed ID: 31129465
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.