These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 34822154)

  • 1. Modeling Plant Tissue Development Using VirtualLeaf.
    Antonovici CC; Peerdeman GY; Wolff HB; Merks RMH
    Methods Mol Biol; 2022; 2395():165-198. PubMed ID: 34822154
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Building simulation models of developing plant organs using VirtualLeaf.
    Merks RM; Guravage MA
    Methods Mol Biol; 2013; 959():333-52. PubMed ID: 23299687
    [TBL] [Abstract][Full Text] [Related]  

  • 3. VirtualLeaf: an open-source framework for cell-based modeling of plant tissue growth and development.
    Merks RM; Guravage M; Inzé D; Beemster GT
    Plant Physiol; 2011 Feb; 155(2):656-66. PubMed ID: 21148415
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adapting a Plant Tissue Model to Animal Development: Introducing Cell Sliding into VirtualLeaf.
    Wolff HB; Davidson LA; Merks RMH
    Bull Math Biol; 2019 Aug; 81(8):3322-3341. PubMed ID: 30927191
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Large-scale parameter studies of cell-based models of tissue morphogenesis using CompuCell3D or VirtualLeaf.
    Palm MM; Merks RM
    Methods Mol Biol; 2015; 1189():301-22. PubMed ID: 25245702
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simulating Crop Root Systems Using OpenSimRoot.
    Schäfer ED; Owen MR; Postma JA; Kuppe C; Black CK; Lynch JP
    Methods Mol Biol; 2022; 2395():293-323. PubMed ID: 34822160
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational models of plant development and form.
    Prusinkiewicz P; Runions A
    New Phytol; 2012 Feb; 193(3):549-569. PubMed ID: 22235985
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PlantSimLab - a modeling and simulation web tool for plant biologists.
    Ha S; Dimitrova E; Hoops S; Altarawy D; Ansariola M; Deb D; Glazebrook J; Hillmer R; Shahin H; Katagiri F; McDowell J; Megraw M; Setubal J; Tyler BM; Laubenbacher R
    BMC Bioinformatics; 2019 Oct; 20(1):508. PubMed ID: 31638901
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Curvature-driven spatial patterns in growing 3D domains: A mechanochemical model for phyllotaxis.
    Rueda-Contreras MD; Romero-Arias JR; Aragón JL; Barrio RA
    PLoS One; 2018; 13(8):e0201746. PubMed ID: 30114231
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A mathematical basis for plant patterning derived from physico-chemical phenomena.
    Beleyur T; Abdul Kareem VK; Shaji A; Prasad K
    Bioessays; 2013 Apr; 35(4):366-76. PubMed ID: 23386477
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mathematical Modelling of Auxin Transport in Plant Tissues: Flux Meets Signalling and Growth.
    Allen HR; Ptashnyk M
    Bull Math Biol; 2020 Jan; 82(2):17. PubMed ID: 31970524
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mathematical modeling of auxin transport in protoxylem and protophloem of Arabidopsis thaliana root tips.
    Novoselova ES; Mironova VV; Omelyanchuk NA; Kazantsev FV; Likhoshvai VA
    J Bioinform Comput Biol; 2013 Feb; 11(1):1340010. PubMed ID: 23427992
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A plausible mechanism for auxin patterning along the developing root.
    Mironova VV; Omelyanchuk NA; Yosiphon G; Fadeev SI; Kolchanov NA; Mjolsness E; Likhoshvai VA
    BMC Syst Biol; 2010 Jul; 4():98. PubMed ID: 20663170
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Introduction to In Silico Modeling to Study ROS Dynamics.
    Schleicher J
    Methods Mol Biol; 2021; 2202():1-32. PubMed ID: 32857342
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strain- or Stress-Sensing in Mechanochemical Patterning by the Phytohormone Auxin.
    Julien JD; Pumir A; Boudaoud A
    Bull Math Biol; 2019 Aug; 81(8):3342-3361. PubMed ID: 30903593
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-organization of plant vascular systems: claims and counter-claims about the flux-based auxin transport model.
    Feller C; Farcot E; Mazza C
    PLoS One; 2015; 10(3):e0118238. PubMed ID: 25734327
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of plant cell wall stiffness by mechanical stress: a mesoscale physical model.
    Oliveri H; Traas J; Godin C; Ali O
    J Math Biol; 2019 Feb; 78(3):625-653. PubMed ID: 30209574
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formal description of plant morphogenesis.
    Pałubicki W; Kokosza A; Burian A
    J Exp Bot; 2019 Jul; 70(14):3601-3613. PubMed ID: 31290543
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The flux-based PIN allocation mechanism can generate either canalyzed or diffuse distribution patterns depending on geometry and boundary conditions.
    Walker ML; Farcot E; Traas J; Godin C
    PLoS One; 2013; 8(1):e54802. PubMed ID: 23382973
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.