These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 34822155)

  • 1. Identifying Developmental Patterns in Structured Plant Phenotyping Data.
    Guédon Y; Caraglio Y; Granier C; Lauri PÉ; Muller B
    Methods Mol Biol; 2022; 2395():199-225. PubMed ID: 34822155
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Registration of spatio-temporal point clouds of plants for phenotyping.
    Chebrolu N; Magistri F; Läbe T; Stachniss C
    PLoS One; 2021; 16(2):e0247243. PubMed ID: 33630896
    [TBL] [Abstract][Full Text] [Related]  

  • 3. BreedVision--a multi-sensor platform for non-destructive field-based phenotyping in plant breeding.
    Busemeyer L; Mentrup D; Möller K; Wunder E; Alheit K; Hahn V; Maurer HP; Reif JC; Würschum T; Müller J; Rahe F; Ruckelshausen A
    Sensors (Basel); 2013 Feb; 13(3):2830-47. PubMed ID: 23447014
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent developments and potential of robotics in plant eco-phenotyping.
    Yao L; van de Zedde R; Kowalchuk G
    Emerg Top Life Sci; 2021 May; 5(2):289-300. PubMed ID: 34013965
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cell to whole-plant phenotyping: the best is yet to come.
    Dhondt S; Wuyts N; Inzé D
    Trends Plant Sci; 2013 Aug; 18(8):428-39. PubMed ID: 23706697
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Root architecture simulation improves the inference from seedling root phenotyping towards mature root systems.
    Zhao J; Bodner G; Rewald B; Leitner D; Nagel KA; Nakhforoosh A
    J Exp Bot; 2017 Feb; 68(5):965-982. PubMed ID: 28168270
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measuring crops in 3D: using geometry for plant phenotyping.
    Paulus S
    Plant Methods; 2019; 15():103. PubMed ID: 31497064
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Synthetic Review of Various Dimensions of Non-Destructive Plant Stress Phenotyping.
    Ye D; Wu L; Li X; Atoba TO; Wu W; Weng H
    Plants (Basel); 2023 Apr; 12(8):. PubMed ID: 37111921
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Leveraging Image Analysis for High-Throughput Plant Phenotyping.
    Das Choudhury S; Samal A; Awada T
    Front Plant Sci; 2019; 10():508. PubMed ID: 31068958
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A photometric stereo-based 3D imaging system using computer vision and deep learning for tracking plant growth.
    Bernotas G; Scorza LCT; Hansen MF; Hales IJ; Halliday KJ; Smith LN; Smith ML; McCormick AJ
    Gigascience; 2019 May; 8(5):. PubMed ID: 31127811
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An Accurate Skeleton Extraction Approach From 3D Point Clouds of Maize Plants.
    Wu S; Wen W; Xiao B; Guo X; Du J; Wang C; Wang Y
    Front Plant Sci; 2019; 10():248. PubMed ID: 30899271
    [TBL] [Abstract][Full Text] [Related]  

  • 12. LeasyScan: a novel concept combining 3D imaging and lysimetry for high-throughput phenotyping of traits controlling plant water budget.
    Vadez V; Kholová J; Hummel G; Zhokhavets U; Gupta SK; Hash CT
    J Exp Bot; 2015 Sep; 66(18):5581-93. PubMed ID: 26034130
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automated phenotyping of plant shoots using imaging methods for analysis of plant stress responses - a review.
    Humplík JF; Lazár D; Husičková A; Spíchal L
    Plant Methods; 2015; 11():29. PubMed ID: 25904970
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computer vision-based phenotyping for improvement of plant productivity: a machine learning perspective.
    Mochida K; Koda S; Inoue K; Hirayama T; Tanaka S; Nishii R; Melgani F
    Gigascience; 2019 Jan; 8(1):. PubMed ID: 30520975
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A New Phenotyping Pipeline Reveals Three Types of Lateral Roots and a Random Branching Pattern in Two Cereals.
    Passot S; Moreno-Ortega B; Moukouanga D; Balsera C; Guyomarc'h S; Lucas M; Lobet G; Laplaze L; Muller B; Guédon Y
    Plant Physiol; 2018 Jul; 177(3):896-910. PubMed ID: 29752308
    [TBL] [Abstract][Full Text] [Related]  

  • 16. HTPheno: an image analysis pipeline for high-throughput plant phenotyping.
    Hartmann A; Czauderna T; Hoffmann R; Stein N; Schreiber F
    BMC Bioinformatics; 2011 May; 12():148. PubMed ID: 21569390
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-throughput image segmentation and machine learning approaches in the plant sciences across multiple scales.
    Buckner E; Tong H; Ottley C; Williams C
    Emerg Top Life Sci; 2021 May; 5(2):239-248. PubMed ID: 33660762
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Machine Vision System for 3D Plant Phenotyping.
    Chaudhury A; Ward C; Talasaz A; Ivanov AG; Brophy M; Grodzinski B; Huner NPA; Patel RV; Barron JL
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(6):2009-2022. PubMed ID: 29993836
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Growth dynamics and heritability for plant high-throughput phenotyping studies using hierarchical functional data analysis.
    Xu Y; Li Y; Qiu Y
    Biom J; 2021 Aug; 63(6):1325-1341. PubMed ID: 33830499
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving High-Throughput Phenotyping Using Fusion of Close-Range Hyperspectral Camera and Low-Cost Depth Sensor.
    Huang P; Luo X; Jin J; Wang L; Zhang L; Liu J; Zhang Z
    Sensors (Basel); 2018 Aug; 18(8):. PubMed ID: 30126148
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.