BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 34822333)

  • 1. Deep-AVPpred: Artificial Intelligence Driven Discovery of Peptide Drugs for Viral Infections.
    Sharma R; Shrivastava S; Singh SK; Kumar A; Singh AK; Saxena S
    IEEE J Biomed Health Inform; 2022 Oct; 26(10):5067-5074. PubMed ID: 34822333
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A separable temporal convolutional networks based deep learning technique for discovering antiviral medicines.
    Singh V; Singh SK
    Sci Rep; 2023 Aug; 13(1):13722. PubMed ID: 37608092
    [TBL] [Abstract][Full Text] [Related]  

  • 3. AVPpred: collection and prediction of highly effective antiviral peptides.
    Thakur N; Qureshi A; Kumar M
    Nucleic Acids Res; 2012 Jul; 40(Web Server issue):W199-204. PubMed ID: 22638580
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deepstacked-AVPs: predicting antiviral peptides using tri-segment evolutionary profile and word embedding based multi-perspective features with deep stacking model.
    Akbar S; Raza A; Zou Q
    BMC Bioinformatics; 2024 Mar; 25(1):102. PubMed ID: 38454333
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep-AFPpred: identifying novel antifungal peptides using pretrained embeddings from seq2vec with 1DCNN-BiLSTM.
    Sharma R; Shrivastava S; Kumar Singh S; Kumar A; Saxena S; Kumar Singh R
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34670278
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Meta-iAVP: A Sequence-Based Meta-Predictor for Improving the Prediction of Antiviral Peptides Using Effective Feature Representation.
    Schaduangrat N; Nantasenamat C; Prachayasittikul V; Shoombuatong W
    Int J Mol Sci; 2019 Nov; 20(22):. PubMed ID: 31731751
    [TBL] [Abstract][Full Text] [Related]  

  • 7. AI4AVP: an antiviral peptides predictor in deep learning approach with generative adversarial network data augmentation.
    Lin TT; Sun YY; Wang CT; Cheng WC; Lu IH; Lin CY; Chen SH
    Bioinform Adv; 2022; 2(1):vbac080. PubMed ID: 36699402
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of natural antimicrobial peptides mimetic to inhibit Ca
    Asseri AH; Islam MR; Alghamdi RM; Altayb HN
    J Bioenerg Biomembr; 2024 Apr; 56(2):125-139. PubMed ID: 38095733
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antiviral peptides against SARS-CoV-2: therapeutic targets, mechanistic antiviral activity, and efficient delivery.
    Essa RZ; Wu YS; Batumalaie K; Sekar M; Poh CL
    Pharmacol Rep; 2022 Dec; 74(6):1166-1181. PubMed ID: 36401119
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antiviral Peptides (AVPs) of Marine Origin as Propitious Therapeutic Drug Candidates for the Treatment of Human Viruses.
    Sukmarini L
    Molecules; 2022 Apr; 27(9):. PubMed ID: 35565968
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep-ABPpred: identifying antibacterial peptides in protein sequences using bidirectional LSTM with word2vec.
    Sharma R; Shrivastava S; Kumar Singh S; Kumar A; Saxena S; Kumar Singh R
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33784381
    [TBL] [Abstract][Full Text] [Related]  

  • 12. FFMAVP: a new classifier based on feature fusion and multitask learning for identifying antiviral peptides and their subclasses.
    Cao R; Hu W; Wei P; Ding Y; Bin Y; Zheng C
    Brief Bioinform; 2023 Sep; 24(6):. PubMed ID: 37861174
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Better understanding and prediction of antiviral peptides through primary and secondary structure feature importance.
    Chowdhury AS; Reehl SM; Kehn-Hall K; Bishop B; Webb-Robertson BM
    Sci Rep; 2020 Nov; 10(1):19260. PubMed ID: 33159146
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DeepAVP: A Dual-Channel Deep Neural Network for Identifying Variable-Length Antiviral Peptides.
    Li J; Pu Y; Tang J; Zou Q; Guo F
    IEEE J Biomed Health Inform; 2020 Oct; 24(10):3012-3019. PubMed ID: 32142462
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A two-stage computational framework for identifying antiviral peptides and their functional types based on contrastive learning and multi-feature fusion strategy.
    Guan J; Yao L; Xie P; Chung CR; Huang Y; Chiang YC; Lee TY
    Brief Bioinform; 2024 Mar; 25(3):. PubMed ID: 38706321
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Review of antiviral peptides for use against zoonotic and selected non-zoonotic viruses.
    Hollmann A; Cardoso NP; Espeche JC; MaffĂ­a PC
    Peptides; 2021 Aug; 142():170570. PubMed ID: 34000327
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DeepAVP-TPPred: identification of antiviral peptides using transformed image-based localized descriptors and binary tree growth algorithm.
    Ullah M; Akbar S; Raza A; Zou Q
    Bioinformatics; 2024 May; 40(5):. PubMed ID: 38710482
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction for understanding the effectiveness of antiviral peptides.
    Nath A
    Comput Biol Chem; 2021 Dec; 95():107588. PubMed ID: 34655913
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Feedback-AVPGAN: Feedback-guided generative adversarial network for generating antiviral peptides.
    Hasegawa K; Moriwaki Y; Terada T; Wei C; Shimizu K
    J Bioinform Comput Biol; 2022 Dec; 20(6):2250026. PubMed ID: 36514872
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Natural antimicrobial peptides as a source of new antiviral agents.
    Zakaryan H; Chilingaryan G; Arabyan E; Serobian A; Wang G
    J Gen Virol; 2021 Sep; 102(9):. PubMed ID: 34554085
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.