These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 34822407)

  • 1. Model Balancing: A Search for In-Vivo Kinetic Constants and Consistent Metabolic States.
    Liebermeister W; Noor E
    Metabolites; 2021 Oct; 11(11):. PubMed ID: 34822407
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Parameter balancing in kinetic models of cell metabolism.
    Lubitz T; Schulz M; Klipp E; Liebermeister W
    J Phys Chem B; 2010 Dec; 114(49):16298-303. PubMed ID: 21038890
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanistic analysis of multi-omics datasets to generate kinetic parameters for constraint-based metabolic models.
    Cotten C; Reed JL
    BMC Bioinformatics; 2013 Jan; 14():32. PubMed ID: 23360254
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Parameter balancing: consistent parameter sets for kinetic metabolic models.
    Lubitz T; Liebermeister W
    Bioinformatics; 2019 Oct; 35(19):3857-3858. PubMed ID: 30793200
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Protein Cost of Metabolic Fluxes: Prediction from Enzymatic Rate Laws and Cost Minimization.
    Noor E; Flamholz A; Bar-Even A; Davidi D; Milo R; Liebermeister W
    PLoS Comput Biol; 2016 Nov; 12(11):e1005167. PubMed ID: 27812109
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extraction of elementary rate constants from global network analysis of E. coli central metabolism.
    Zhao J; Ridgway D; Broderick G; Kovalenko A; Ellison M
    BMC Syst Biol; 2008 May; 2():41. PubMed ID: 18462493
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Including metabolite concentrations into flux balance analysis: thermodynamic realizability as a constraint on flux distributions in metabolic networks.
    Hoppe A; Hoffmann S; Holzhütter HG
    BMC Syst Biol; 2007 Jun; 1():23. PubMed ID: 17543097
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A kinetic model of Escherichia coli core metabolism satisfying multiple sets of mutant flux data.
    Khodayari A; Zomorrodi AR; Liao JC; Maranas CD
    Metab Eng; 2014 Sep; 25():50-62. PubMed ID: 24928774
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid simulation and analysis of isotopomer distributions using constraints based on enzyme mechanisms: an example from HT29 cancer cells.
    Selivanov VA; Meshalkina LE; Solovjeva ON; Kuchel PW; Ramos-Montoya A; Kochetov GA; Lee PW; Cascante M
    Bioinformatics; 2005 Sep; 21(17):3558-64. PubMed ID: 16002431
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetic models of metabolism that consider alternative steady-state solutions of intracellular fluxes and concentrations.
    Hameri T; Fengos G; Ataman M; Miskovic L; Hatzimanikatis V
    Metab Eng; 2019 Mar; 52():29-41. PubMed ID: 30455161
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bringing metabolic networks to life: integration of kinetic, metabolic, and proteomic data.
    Liebermeister W; Klipp E
    Theor Biol Med Model; 2006 Dec; 3():42. PubMed ID: 17173670
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bringing metabolic networks to life: convenience rate law and thermodynamic constraints.
    Liebermeister W; Klipp E
    Theor Biol Med Model; 2006 Dec; 3():41. PubMed ID: 17173669
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DMPy: a Python package for automated mathematical model construction of large-scale metabolic systems.
    Smith RW; van Rosmalen RP; Martins Dos Santos VAP; Fleck C
    BMC Syst Biol; 2018 Jun; 12(1):72. PubMed ID: 29914475
    [TBL] [Abstract][Full Text] [Related]  

  • 14. From Escherichia coli mutant 13C labeling data to a core kinetic model: A kinetic model parameterization pipeline.
    Foster CJ; Gopalakrishnan S; Antoniewicz MR; Maranas CD
    PLoS Comput Biol; 2019 Sep; 15(9):e1007319. PubMed ID: 31504032
    [TBL] [Abstract][Full Text] [Related]  

  • 15. k-Cone analysis: determining all candidate values for kinetic parameters on a network scale.
    Famili I; Mahadevan R; Palsson BO
    Biophys J; 2005 Mar; 88(3):1616-25. PubMed ID: 15626710
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Systematic construction of kinetic models from genome-scale metabolic networks.
    Stanford NJ; Lubitz T; Smallbone K; Klipp E; Mendes P; Liebermeister W
    PLoS One; 2013; 8(11):e79195. PubMed ID: 24324546
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bottom-up parameterization of enzyme rate constants: Reconciling inconsistent data.
    Zielinski DC; Matos MRA; de Bree JE; Glass K; Sonnenschein N; Palsson BO
    Metab Eng Commun; 2024 Jun; 18():e00234. PubMed ID: 38711578
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrating Kinetic Model of E. coli with Genome Scale Metabolic Fluxes Overcomes Its Open System Problem and Reveals Bistability in Central Metabolism.
    Mannan AA; Toya Y; Shimizu K; McFadden J; Kierzek AM; Rocco A
    PLoS One; 2015; 10(10):e0139507. PubMed ID: 26469081
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A scalable method for parameter identification in kinetic models of metabolism using steady-state data.
    Srinivasan S; Cluett WR; Mahadevan R
    Bioinformatics; 2019 Dec; 35(24):5216-5225. PubMed ID: 31197317
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.