BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 34822408)

  • 1. Increased Reliance on Carbohydrates for Aerobic Exercise in Highland Andean Leaf-Eared Mice, but Not in Highland Lima Leaf-Eared Mice.
    Schippers MP; Ramirez O; Arana M; McClelland GB
    Metabolites; 2021 Oct; 11(11):. PubMed ID: 34822408
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acclimation to hypoxia increases carbohydrate use during exercise in high-altitude deer mice.
    Lau DS; Connaty AD; Mahalingam S; Wall N; Cheviron ZA; Storz JF; Scott GR; McClelland GB
    Am J Physiol Regul Integr Comp Physiol; 2017 Mar; 312(3):R400-R411. PubMed ID: 28077391
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Increase in carbohydrate utilization in high-altitude Andean mice.
    Schippers MP; Ramirez O; Arana M; Pinedo-Bernal P; McClelland GB
    Curr Biol; 2012 Dec; 22(24):2350-4. PubMed ID: 23219722
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Function of left ventricle mitochondria in highland deer mice and lowland mice.
    Mahalingam S; Coulson SZ; Scott GR; McClelland GB
    J Comp Physiol B; 2023 Mar; 193(2):207-217. PubMed ID: 36795175
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fuel Use in Mammals: Conserved Patterns and Evolved Strategies for Aerobic Locomotion and Thermogenesis.
    McClelland GB; Lyons SA; Robertson CE
    Integr Comp Biol; 2017 Aug; 57(2):231-239. PubMed ID: 28859408
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-altitude ancestry and hypoxia acclimation have distinct effects on exercise capacity and muscle phenotype in deer mice.
    Lui MA; Mahalingam S; Patel P; Connaty AD; Ivy CM; Cheviron ZA; Storz JF; McClelland GB; Scott GR
    Am J Physiol Regul Integr Comp Physiol; 2015 May; 308(9):R779-91. PubMed ID: 25695288
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A test of altitude-related variation in aerobic metabolism of Andean birds.
    Gutierrez-Pinto N; Londoño GA; Chappell MA; Storz JF
    J Exp Biol; 2021 Jun; 224(11):1-6. PubMed ID: 34060605
    [TBL] [Abstract][Full Text] [Related]  

  • 8. To what extent do physiological tolerances determine elevational range limits of mammals?
    Storz JF; Scott GR
    J Physiol; 2023 Oct; ():. PubMed ID: 37889163
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermogenesis is supported by high rates of circulatory fatty acid and triglyceride delivery in highland deer mice.
    Lyons SA; McClelland GB
    J Exp Biol; 2022 Jun; 225(12):. PubMed ID: 35552735
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulatory changes contribute to the adaptive enhancement of thermogenic capacity in high-altitude deer mice.
    Cheviron ZA; Bachman GC; Connaty AD; McClelland GB; Storz JF
    Proc Natl Acad Sci U S A; 2012 May; 109(22):8635-40. PubMed ID: 22586089
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Taxonomic revision of the Andean leaf-eared mouse, Phyllotis andium Thomas 1912 (Rodentia: Cricetidae), with the description of a new species.
    Rengifo EM; Pacheco V
    Zootaxa; 2015 Sep; 4018(3):349-80. PubMed ID: 26624045
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasticity of non-shivering thermogenesis and brown adipose tissue in high-altitude deer mice.
    Coulson SZ; Robertson CE; Mahalingam S; McClelland GB
    J Exp Biol; 2021 May; 224(10):. PubMed ID: 34060604
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Signatures of high-altitude adaptation in the major hemoglobin of five species of andean dabbling ducks.
    McCracken KG; Barger CP; Bulgarella M; Johnson KP; Kuhner MK; Moore AV; Peters JL; Trucco J; Valqui TH; Winker K; Wilson RE
    Am Nat; 2009 Nov; 174(5):631-50. PubMed ID: 19788356
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contributions of phenotypic plasticity to differences in thermogenic performance between highland and lowland deer mice.
    Cheviron ZA; Bachman GC; Storz JF
    J Exp Biol; 2013 Apr; 216(Pt 7):1160-6. PubMed ID: 23197099
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Substrate oxidation and the influence of breakfast in normobaric hypoxia and normoxia.
    Griffiths A; Deighton K; Shannon OM; Matu J; King R; O'Hara JP
    Eur J Appl Physiol; 2019 Sep; 119(9):1909-1920. PubMed ID: 31270614
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolved changes in the intracellular distribution and physiology of muscle mitochondria in high-altitude native deer mice.
    Mahalingam S; McClelland GB; Scott GR
    J Physiol; 2017 Jul; 595(14):4785-4801. PubMed ID: 28418073
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hormonal and metabolic adjustments during exercise in hypoxia or normoxia in highland natives.
    Favier R; Desplanches D; Hoppeler H; Caceres E; Grunenfelder A; Koubi H; Leuenberger M; Sempore B; Tuscher L; Spielvogel H
    J Appl Physiol (1985); 1996 Feb; 80(2):632-7. PubMed ID: 8929608
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adaptive Modifications of Muscle Phenotype in High-Altitude Deer Mice Are Associated with Evolved Changes in Gene Regulation.
    Scott GR; Elogio TS; Lui MA; Storz JF; Cheviron ZA
    Mol Biol Evol; 2015 Aug; 32(8):1962-76. PubMed ID: 25851956
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic and work efficiencies during exercise in Andean natives.
    Hochachka PW; Stanley C; Matheson GO; McKenzie DC; Allen PS; Parkhouse WS
    J Appl Physiol (1985); 1991 Apr; 70(4):1720-30. PubMed ID: 2055851
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chronic cold exposure induces mitochondrial plasticity in deer mice native to high altitudes.
    Mahalingam S; Cheviron ZA; Storz JF; McClelland GB; Scott GR
    J Physiol; 2020 Dec; 598(23):5411-5426. PubMed ID: 32886797
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.