These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 34822466)

  • 1. Mitosis Inhibitors Induce Massive Accumulation of Phytoene in the Microalga
    Xu Y; Harvey PJ
    Mar Drugs; 2021 Oct; 19(11):. PubMed ID: 34822466
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stereoisomers of Colourless Carotenoids from the Marine Microalga
    Mazzucchi L; Xu Y; Harvey P
    Molecules; 2020 Apr; 25(8):. PubMed ID: 32325762
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of Cellular Uptake and Removal of Chlorpropham in the Treatment of
    Mazzucchi L; Xu Y; Harvey PJ
    Mar Drugs; 2022 May; 20(6):. PubMed ID: 35736170
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carotenoid Production by
    Xu Y; Harvey PJ
    Antioxidants (Basel); 2019 May; 8(5):. PubMed ID: 31067695
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accumulation of phytoene, a colorless carotenoid by inhibition of phytoene desaturase (PDS) gene in Dunaliella salina V-101.
    Srinivasan R; Babu S; Gothandam KM
    Bioresour Technol; 2017 Oct; 242():311-318. PubMed ID: 28347620
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ethanol as a carotenoid production stimulator in Dunaliella salina CCAP 19/18.
    Hamidkhani A; Asgarani E; Saboora A; Ghorbanmehr N; Hejazi MA
    Folia Microbiol (Praha); 2023 Dec; 68(6):925-937. PubMed ID: 37213053
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Roles of Two Phytoene Synthases and Orange Protein in Carotenoid Metabolism of the β-Carotene-Accumulating
    Liang MH; Xie SR; Dai JL; Chen HH; Jiang JG
    Microbiol Spectr; 2023 Jun; 11(3):e0006923. PubMed ID: 37022233
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation and characterization of phytoene desaturase cDNA involved in the beta-carotene biosynthetic pathway in Dunaliella salina.
    Zhu YH; Jiang JG; Yan Y; Chen XW
    J Agric Food Chem; 2005 Jul; 53(14):5593-7. PubMed ID: 15998120
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Comparison of β-Carotene, Phytoene and Amino Acids Production in
    Sui Y; Mazzucchi L; Acharya P; Xu Y; Morgan G; Harvey PJ
    Foods; 2021 Nov; 10(11):. PubMed ID: 34829102
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phytoene Accumulation in the Novel Microalga
    Laje K; Seger M; Dungan B; Cooke P; Polle J; Holguin FO
    Mar Drugs; 2019 Mar; 17(3):. PubMed ID: 30909380
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of abiotic stressors on lutein production in the green microalga Dunaliella salina.
    Fu W; Paglia G; Magnúsdóttir M; Steinarsdóttir EA; Gudmundsson S; Palsson BØ; Andrésson ÓS; Brynjólfsson S
    Microb Cell Fact; 2014 Jan; 13():3. PubMed ID: 24397433
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of Light Intensity and Wavelength on Biomass Growth and Protein and Amino Acid Composition of
    Sui Y; Harvey PJ
    Foods; 2021 May; 10(5):. PubMed ID: 34067033
    [No Abstract]   [Full Text] [Related]  

  • 13. Production of phytoene by herbicide-treated microalgae Dunaliella bardawil in two-phase systems.
    León R; Vila M; Hernánz D; Vílchez C
    Biotechnol Bioeng; 2005 Dec; 92(6):695-701. PubMed ID: 16080183
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancement of carotenoid biosynthesis in the green microalga Dunaliella salina with light-emitting diodes and adaptive laboratory evolution.
    Fu W; Guðmundsson O; Paglia G; Herjólfsson G; Andrésson OS; Palsson BO; Brynjólfsson S
    Appl Microbiol Biotechnol; 2013 Mar; 97(6):2395-403. PubMed ID: 23095941
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Red Light Control of β-Carotene Isomerisation to
    Xu Y; Harvey PJ
    Antioxidants (Basel); 2019 May; 8(5):. PubMed ID: 31137878
    [No Abstract]   [Full Text] [Related]  

  • 16. Enhancement of co-production of nutritional protein and carotenoids in Dunaliella salina using a two-phase cultivation assisted by nitrogen level and light intensity.
    Sui Y; Muys M; Van de Waal DB; D'Adamo S; Vermeir P; Fernandes TV; Vlaeminck SE
    Bioresour Technol; 2019 Sep; 287():121398. PubMed ID: 31078812
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcription activation of β-carotene biosynthetic genes at the initial stage of stresses as an indicator of the increased β-carotene accumulation in isolated Dunaliella salina strain GY-H13.
    Zhu QL; Zheng JL; Liu J
    Aquat Toxicol; 2020 May; 222():105472. PubMed ID: 32203794
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using wastewater as a cultivation alternative for microalga Dunaliella salina: Potentials and challenges.
    de Souza Celente G; de Cassia de Souza Schneider R; Medianeira Rizzetti T; Lobo EA; Sui Y
    Sci Total Environ; 2024 Feb; 911():168812. PubMed ID: 38000734
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nutrient limitation is the main regulatory factor for carotenoid accumulation and for Psy and Pds steady state transcript levels in Dunaliella salina (Chlorophyta) exposed to high light and salt stress.
    Coesel SN; Baumgartner AC; Teles LM; Ramos AA; Henriques NM; Cancela L; Varela JC
    Mar Biotechnol (NY); 2008; 10(5):602-11. PubMed ID: 18449600
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deciphering the β-carotene hyperaccumulation in Dunaliella by the comprehensive analysis of Dunaliella salina and Dunaliella tertiolecta under high light conditions.
    Kim M; Kim J; Lee S; Khanh N; Li Z; Polle JEW; Jin E
    Plant Cell Environ; 2024 Jan; 47(1):213-229. PubMed ID: 37727131
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.