These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 34822857)

  • 21. Oxidation of Cr(III) in tannery sludge to Cr(VI): field observations and theoretical assessment.
    Apte AD; Verma S; Tare V; Bose P
    J Hazard Mater; 2005 May; 121(1-3):215-22. PubMed ID: 15885424
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Oxidation of Cr(III)-Fe(III) Mixed-Phase Hydroxides by Chlorine: Implications on the Control of Hexavalent Chromium in Drinking Water.
    Chebeir M; Liu H
    Environ Sci Technol; 2018 Jul; 52(14):7663-7670. PubMed ID: 29772182
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A new pathway for hexavalent chromium formation in soil: Fire-induced alteration of iron oxides.
    Burton ED; Choppala G; Karimian N; Johnston SG
    Environ Pollut; 2019 Apr; 247():618-625. PubMed ID: 30711817
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Potential of modified iron-rich foundry waste for environmental applications: Fenton reaction and Cr(VI) reduction.
    Oliveira PE; Oliveira LD; Ardisson JD; Lago RM
    J Hazard Mater; 2011 Oct; 194():393-8. PubMed ID: 21890267
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Solution structures of chromium(VI) complexes with glutathione and model thiols.
    Levina A; Lay PA
    Inorg Chem; 2004 Jan; 43(1):324-35. PubMed ID: 14704084
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Microstructure, Thermal Stability, and Catalytic Activity of Compounds Formed in CaO-SiO
    Niuniavaite D; Baltakys K; Dambrauskas T; Eisinas A; Rubinaite D; Jaskunas A
    Nanomaterials (Basel); 2020 Jul; 10(7):. PubMed ID: 32630781
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Controlled reduction of red mud waste to produce active systems for environmental applications: heterogeneous Fenton reaction and reduction of Cr(VI).
    Costa RC; Moura FC; Oliveira PE; Magalhães F; Ardisson JD; Lago RM
    Chemosphere; 2010 Feb; 78(9):1116-20. PubMed ID: 20060564
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Investigation of the removal mechanism of Cr(VI) in groundwater using activated carbon and cast iron combined system.
    Huang D; Wang G; Li Z; Kang F; Liu F
    Environ Sci Pollut Res Int; 2017 Aug; 24(22):18341-18354. PubMed ID: 28639020
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Thermal treatment of solid waste in view of recycling: Chromate and molybdate formation and leaching behaviour.
    Verbinnen B; Billen P; Vandecasteele C
    Waste Manag Res; 2014 Jun; 32(6):536-42. PubMed ID: 24794032
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of coupled dissolution and redox reactions on Cr(VI)aq attenuation during transport in the sediments under hyperalkaline conditions.
    Qafoku NP; Ainsworth CC; Szecsody JE; Qafoku OS; Heald SM
    Environ Sci Technol; 2003 Aug; 37(16):3640-6. PubMed ID: 12953877
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A study of Cr(VI) in ashes from fluidized bed combustion of municipal solid waste: leaching, secondary reactions and the applicability of some speciation methods.
    Abbas ZA; Steenari BM; Lindqvist O
    Waste Manag; 2001; 21(8):725-39. PubMed ID: 11699630
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nanoencapsulation of hexavalent chromium with nanoscale zero-valent iron: High resolution chemical mapping of the passivation layer.
    Huang XY; Ling L; Zhang WX
    J Environ Sci (China); 2018 May; 67():4-13. PubMed ID: 29778172
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Reduction and Simultaneous Removal of
    Saslow SA; Um W; Pearce CI; Engelhard MH; Bowden ME; Lukens W; Leavy II; Riley BJ; Kim DS; Schweiger MJ; Kruger AA
    Environ Sci Technol; 2017 Aug; 51(15):8635-8642. PubMed ID: 28695732
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The conditions favourable to oxidation of Cr (III) to Cr (VI) and the presence of chromium forms on the area contaminated by tannery wastes.
    Stepniewska Z; Bucior K
    Folia Histochem Cytobiol; 2001; 39 Suppl 2():146-7. PubMed ID: 11820579
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A study on the reduction of hexavalent chromium in aqueous solutions by vinasse.
    Altundogan HS; Ozer A; Tümen F
    Environ Technol; 2004 Nov; 25(11):1257-63. PubMed ID: 15617440
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Chromium (VI) reduction in aqueous solutions by Fe3O4-stabilized Fe0 nanoparticles.
    Wu Y; Zhang J; Tong Y; Xu X
    J Hazard Mater; 2009 Dec; 172(2-3):1640-5. PubMed ID: 19740609
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Efficient removal of Cr(VI) from aqueous solution with Fe@Fe2O3 core-shell nanowires.
    Ai Z; Cheng Y; Zhang L; Qiu J
    Environ Sci Technol; 2008 Sep; 42(18):6955-60. PubMed ID: 18853815
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Development of a new Cr(VI)-biosorbent from agricultural biowaste.
    Park D; Lim SR; Yun YS; Park JM
    Bioresour Technol; 2008 Dec; 99(18):8810-8. PubMed ID: 18511265
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of humic substance on thermal treatment of chromium(VI)-containing latosol soil.
    Wei YL; Hsieh HF
    J Air Waste Manag Assoc; 2006 Mar; 56(3):350-5. PubMed ID: 16573198
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Extent of oxidation of Cr(III) to Cr(VI) under various conditions pertaining to natural environment.
    Apte AD; Tare V; Bose P
    J Hazard Mater; 2006 Feb; 128(2-3):164-74. PubMed ID: 16297546
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.